Metabolic dysregulation is central to the pathogenesis of diabetes and obesity. The Metabolic Pathophysiology Core (MPC) provides services to comprehensively phenotype metabolic processes in mouse models. The MPC has three Subcores: Metabolic Regulation, Tissue and In Vivo Imaging and Bariatric Surgery. The Metabolic Regulation Subcore provides tools to accurately assess metabolism in healthy, conscious, unstressed mice. This Subcore uses unique skills in chronically implanting catheters into the carotid artery and jugular vein to perform glucose clamps in the mouse. In addition, it has developed techniques to catheterize the portal vein and stomach to deliver hormones and nutrients by their physiologic routes. This Subcore also provides services to assess the components of energy balance (energy expenditure, food intake, activity, body composition). The MPC provides not only standardized tests for metabolic and endocrine assessments, but is also able to adapt using more sophisticated protocols. Additional services include in vitro organ perfusion techniques (liver, pancreas, hindlimb). It partners with VDRTC Islet Procurement and Analysis Core to provide high quality islets to investigators as well as tools to characterize islet function. The Tissue and In Vivo Imaging Subcore offers novel imaging technology to study metabolic processes in real time at the molecular level. Resources ofthis Subcore include: 1) a multi-photon excitation confocal microscope to visualize real time kinetics of calcium, NAD(P)H, and pH and fluorescent probes in cells and in situ whole organ preparations;and 2) bioluminescence imaging, to assay real-time kinetics of gene expression in intact mice by combining luciferase as a reporter gene with a highly sensitive optical single photon detection system. The Bariatric Surgery Subcore provides mice with restrictive or bypass surgical procedures that recapitulate the surgical procedures performed in humans for weight loss. The MPC, by virtue of its novel subcores, provides state-of-the-art technology to delineate the mechanism for the phenotypic expression of metabolic disorders in mice.

Public Health Relevance

This core provides services to investigators to help them quantify the impact of a genetic or pharmacologic manipulation on metabolic and endocrine processes in mice with the hope of helping them discover how to cure metabolic disease such as obesity and diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
2U24DK059637-11
Application #
8204244
Study Section
Special Emphasis Panel (ZDK1-GRB-S (M1))
Project Start
Project End
Budget Start
2011-09-16
Budget End
2012-05-31
Support Year
11
Fiscal Year
2011
Total Cost
$330,272
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Hughey, Curtis C; Trefts, Elijah; Bracy, Deanna P et al. (2018) Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J Biol Chem 293:11944-11954
Williams, Ian M; Valenzuela, Francisco A; Kahl, Steven D et al. (2018) Insulin exits skeletal muscle capillaries by fluid-phase transport. J Clin Invest 128:699-714
Yao, Lina; Seaton, Sarah Craven; Ndousse-Fetter, Sula et al. (2018) A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7:
Kook, Seunghyi; Qi, Aidong; Wang, Ping et al. (2018) Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 58:566-574
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Babaev, Vladimir R; Huang, Jiansheng; Ding, Lei et al. (2018) Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 9:215
Fensterheim, Benjamin A; Young, Jamey D; Luan, Liming et al. (2018) The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism. J Immunol 200:3777-3789
Harris, Nicholas A; Isaac, Austin T; Günther, Anne et al. (2018) Dorsal BNST ?2A-Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors. J Neurosci 38:8922-8942
Mani, Bharath K; Castorena, Carlos M; Osborne-Lawrence, Sherri et al. (2018) Ghrelin mediates exercise endurance and the feeding response post-exercise. Mol Metab 9:114-130
Ehrlicher, Sarah E; Stierwalt, Harrison D; Newsom, Sean A et al. (2018) Skeletal muscle autophagy remains responsive to hyperinsulinemia and hyperglycemia at higher plasma insulin concentrations in insulin-resistant mice. Physiol Rep 6:e13810

Showing the most recent 10 out of 661 publications