The Metabolomics Advanced Services Core combines capabilities for metabolomic data analysis from six metabolic laboratories located at UC Davis: the Fiehn Genome Center metabolomics laboratory (primary metabolism and complex lipids), the Hammock NIEHS superfund laboratory (eicosanoids and vitamins), the Lebrilla mass spectrometry laboratory (glycans), the Newman WHNCR laboratory (lipid mediators), the Cherry laboratory (imaging) and the Gaikwad laboratory (steroids). These methods will be available for service in Pilot &Feasibility studies and through recharge-rate fee structures. The laboratories will further advance and expand these methods for cross-platform integrated metabolomic studies. All services will be promoted by the Administrative Core, with samples to be delivered through the Central Service Core and managed by the centralized LIMS software. Advanced methods that have been automated and validated to be applicable for fast, high-quality operation will be transferred to the Central Service Core to accelerate throughput and turnaround times for regional and national clients. The Advanced Services laboratories will help with metabolomics training and pilot projects administered by the Promotion &Outreach Core. The core will provide comprehensive capabilities for metabolomic studies. Faculty and staff will collaborate with regional scientists in study design, implementation and data interpretation of metabolomic projects in clinical and preclinical studies. The core will expand the scope of its current quantification capabilities of 1,069 identified metabolite targets. Using untargeted metabolomics, the core will provide discovery services that extend to novel metabolic intermediates, followed by subsequent structural annotations and validation measurements. Secondly, the Core will advance metabolomics services and transfer methods to the Central Service Core. Scientists will develop or adapt methods to accelerate sample preparation processes by automating liquid- and solid-phase handling steps using a robotic sample handling device. Data processing steps will be optimized, and final methods will be transferred to the Central Service Core for the most robustly quantifiable sets of target metabolites. Isotope-based flux analyses will be implemented and transferred to the Central Service Core on GC-MS basis. For untargeted metabolomics, generalized retention-index marker compounds will be used to enable alignment procedures across different matrices. Image-guided mass spectrometry will open a novel field in metabolomics using fluorescently labeled metabolites and drugs for spatially targeting metabolically active zones in tissues and cell types.

Public Health Relevance

Comprehensive analysis of metabolism is critical to understand diseases such as diabetes, heart attack and stroke, or growth and progression of cancerous tumors. Development and advancement of tools enabling to establish holistic views onto bodily and cellular metabolism will help achieving this goal. The aim is to advance science and technology as well make metabolomic tools available to clinical and preclinical scientists.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK097154-02
Application #
8539791
Study Section
Special Emphasis Panel (ZRG1-BST-J)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$470,925
Indirect Cost
$167,985
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Shahid, Muhammad; Lee, Min Young; Yeon, Austin et al. (2018) Menthol, a unique urinary volatile compound, is associated with chronic inflammation in interstitial cystitis. Sci Rep 8:10859
Hook, Vivian; Lietz, Christopher B; Podvin, Sonia et al. (2018) Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry. J Am Soc Mass Spectrom 29:807-816
Hernandez-Carretero, A; Weber, N; La Frano, M R et al. (2018) Obesity-induced changes in lipid mediators persist after weight loss. Int J Obes (Lond) 42:728-736
Agrawal, Karan; Waller, Justin D; Pedersen, Theresa L et al. (2018) Effects of stimulation technique, anatomical region, and time on human sweat lipid mediator profiles. Prostaglandins Other Lipid Mediat 134:84-92
Jung, Jae Hun; You, Sungyong; Oh, Jae Won et al. (2018) Integrated proteomic and phosphoproteomic analyses of cisplatin-sensitive and resistant bladder cancer cells reveal CDK2 network as a key therapeutic target. Cancer Lett 437:1-12
Barupal, Dinesh Kumar; Fan, Sili; Wancewicz, Benjamin et al. (2018) Generation and quality control of lipidomics data for the alzheimer's disease neuroimaging initiative cohort. Sci Data 5:180263
Fong, Louise Y; Jing, Ruiyan; Smalley, Karl J et al. (2018) Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats. Proc Natl Acad Sci U S A 115:E11091-E11100
Pedersen, Theresa L; Newman, John W (2018) Establishing and Performing Targeted Multi-residue Analysis for Lipid Mediators and Fatty Acids in Small Clinical Plasma Samples. Methods Mol Biol 1730:175-212
Ha, Yun-Sok; Kim, Yeon-Yong; Yu, Na Hee et al. (2018) Down-regulation of transient receptor potential melastatin member 7 prevents migration and invasion of renal cell carcinoma cells via inactivation of the Src and Akt pathway. Investig Clin Urol 59:263-274
Gao, Bei; Gallagher, Tara; Zhang, Ying et al. (2018) Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa Metabolism and Physiology Are Influenced by Rothia mucilaginosa-Derived Metabolites. mSphere 3:

Showing the most recent 10 out of 184 publications