The Metabolomics Advanced Services Core combines capabilities for metabolomic data analysis from six metabolic laboratories located at UC Davis: the Fiehn Genome Center metabolomics laboratory (primary metabolism and complex lipids), the Hammock NIEHS superfund laboratory (eicosanoids and vitamins), the Lebrilla mass spectrometry laboratory (glycans), the Newman WHNCR laboratory (lipid mediators), the Cherry laboratory (imaging) and the Gaikwad laboratory (steroids). These methods will be available for service in Pilot &Feasibility studies and through recharge-rate fee structures. The laboratories will further advance and expand these methods for cross-platform integrated metabolomic studies. All services will be promoted by the Administrative Core, with samples to be delivered through the Central Service Core and managed by the centralized LIMS software. Advanced methods that have been automated and validated to be applicable for fast, high-quality operation will be transferred to the Central Service Core to accelerate throughput and turnaround times for regional and national clients. The Advanced Services laboratories will help with metabolomics training and pilot projects administered by the Promotion &Outreach Core. The core will provide comprehensive capabilities for metabolomic studies. Faculty and staff will collaborate with regional scientists in study design, implementation and data interpretation of metabolomic projects in clinical and preclinical studies. The core will expand the scope of its current quantification capabilities of 1,069 identified metabolite targets. Using untargeted metabolomics, the core will provide discovery services that extend to novel metabolic intermediates, followed by subsequent structural annotations and validation measurements. Secondly, the Core will advance metabolomics services and transfer methods to the Central Service Core. Scientists will develop or adapt methods to accelerate sample preparation processes by automating liquid- and solid-phase handling steps using a robotic sample handling device. Data processing steps will be optimized, and final methods will be transferred to the Central Service Core for the most robustly quantifiable sets of target metabolites. Isotope-based flux analyses will be implemented and transferred to the Central Service Core on GC-MS basis. For untargeted metabolomics, generalized retention-index marker compounds will be used to enable alignment procedures across different matrices. Image-guided mass spectrometry will open a novel field in metabolomics using fluorescently labeled metabolites and drugs for spatially targeting metabolically active zones in tissues and cell types.

Public Health Relevance

Comprehensive analysis of metabolism is critical to understand diseases such as diabetes, heart attack and stroke, or growth and progression of cancerous tumors. Development and advancement of tools enabling to establish holistic views onto bodily and cellular metabolism will help achieving this goal. The aim is to advance science and technology as well make metabolomic tools available to clinical and preclinical scientists.

Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
City
Davis
State
CA
Country
United States
Zip Code
95618
Ha, Yun-Sok; Kim, Yeon-Yong; Yu, Na Hee et al. (2018) Down-regulation of transient receptor potential melastatin member 7 prevents migration and invasion of renal cell carcinoma cells via inactivation of the Src and Akt pathway. Investig Clin Urol 59:263-274
Gao, Bei; Gallagher, Tara; Zhang, Ying et al. (2018) Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa Metabolism and Physiology Are Influenced by Rothia mucilaginosa-Derived Metabolites. mSphere 3:
Killion, Elizabeth A; Reeves, Andrew R; El Azzouny, Mahmoud A et al. (2018) A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab 9:43-56
Garratt, Michael; Lagerborg, Kim A; Tsai, Yi-Miau et al. (2018) Male lifespan extension with 17-? estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell :e12786
Nagy-Szakal, Dorottya; Barupal, Dinesh K; Lee, Bohyun et al. (2018) Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Sci Rep 8:10056
Gifford, Isaac; Battenberg, Kai; Vaniya, Arpana et al. (2018) Distinctive Patterns of Flavonoid Biosynthesis in Roots and Nodules of Datisca glomerata and Medicago spp. Revealed by Metabolomic and Gene Expression Profiles. Front Plant Sci 9:1463
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Shearer, Gregory C; Borkowski, Kamil; Puumala, Susan L et al. (2018) Abnormal lipoprotein oxylipins in metabolic syndrome and partial correction by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 128:1-10
Wandro, Stephen; Osborne, Stephanie; Enriquez, Claudia et al. (2018) The Microbiome and Metabolome of Preterm Infant Stool Are Personalized and Not Driven by Health Outcomes, Including Necrotizing Enterocolitis and Late-Onset Sepsis. mSphere 3:
Lai, Zijuan; Tsugawa, Hiroshi; Wohlgemuth, Gert et al. (2018) Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods 15:53-56

Showing the most recent 10 out of 184 publications