Human evolution has created complex metabolism systems to transform and eliminate potentially harmful chemicals to which we are exposed. Available evidence indicates that these systems generate a million or more different chemical metabolites, most of which are completely uncharacterized. Widespread use of mass spectrometry-based metabolomics methods shows that many unidentified mass spectral features are significantly associated with human diseases. Substantial epidemiological research implicates environmental contributions to many disease processes, and we believe that many of the unidentified mass spectral features are metabolites of environmental chemicals. We have an established and successful human exposome research center focused on improving the understanding of environmental contributions to disease. The present proposal is to build upon this foundation to develop powerful new chemical identification tools that can be scaled to identify hundreds of thousands of foreign chemical metabolites in the human body. We have assembled an exposome research team of analytical scientists with expertise in mass spectrometry, xenobiotic metabolism, computational chemistry and robotic methods, to develop and test new chemical identification tools to identify hundreds of thousands of foreign chemical metabolites. Our approach relies upon expertise in 1) computational chemistry to predict possible xenobiotic metabolites, respective adduct forms and ion dissociation patterns in mass spectrometry, 2) use of enzymatic and cellular xenobiotic biotransformation systems, which allows creation of multi-well panels containing specific biotransformation systems to generate xenobiotic metabolites, 3) ion fragmentation mass spectrometry and NMR spectroscopy methods to confirm chemical identities and 4) expertise with robotic systems which can be used to scale the approach to identify hundreds of thousands of metabolites of environmental chemicals. An Administrative Core will maintain an organizational structure and coordinate activities between the Experimental Core and the Computational Core, NIH and the Stakeholder Engagement and Program Coordination Center (SEPCC). The Experimental Core will develop and provide compound identification capability with ultra-high-resolution mass spectrometry support. The Computational Core will develop a predicted xenobiotic metabolite database to support metabolite identification. The Administrative Core will maintain interactions with HERCULES Exposome Research Center and support interactions with prospective Core users. Milestones are established to monitor progress toward goals to establish tools for compound identification that can be scaled to identify hundreds of thousands of foreign chemical metabolites. The results will catalyze metabolomics research by providing new ways to identify unknown metabolites of environmental chemicals, and also support identification of a broader range of metabolites of drugs, food, microbiome, dietary supplements and commercial products.
Human evolution has created complex metabolism systems to transform and eliminate potentially harmful chemicals to which we are exposed. Available evidence indicates that these systems generate a million or more different chemical metabolites, most of which are completely uncharacterized. This project is to support a team of scientists to develop powerful new chemical identification tools that can be scaled to identify hundreds of thousands of foreign chemical metabolites in the human body.