This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Over the past decade, multi-center clinical trials utilizing diagnostic imaging modalities have been conducted and sponsored by the National Institutes of Health. Collaborative research is a key part of the 'Roadmap' for the future. When analyzing large diagnostic imaging trial data, assigning voxel labels to different tissue classes or anatomical structures is an important goal. From these studies, apart from binary and categorical data, continuous data are increasingly available, for example, probabilistic segmentation, lesion volume, distance between volume surfaces, percentage of overlapping voxels, and percentage of highly discrepant voxels. Thus, current standards for assessment of imaging systems require task-dependent measures. In this R01 grant proposal, we propose to develop a novel and general statistical validation strategy for evaluating multi-center diagnostic imaging trial data, illustrated on two completed prospective studies previously conducted by the Radiological Diagnostic Oncology Group and the Biomedical Informatics Research Network, respectively.
We aim to validate the accuracy and reliability of the previous studies, with the presence of multi-level factors derived from clustered multi-center diagnostic data. Hierarchical methodology is developed by incorporating the effects of 'spatial' (voxels), 'individual' (patients), 'clusters' (clinical centers), and 'risk strata' (covariates). Receiver operating characteristic analysis, mutual information, overlap index, and the expectation-maximization algorithm will be employed to evaluate diagnostic classification accuracy. These methods may be generalized to many problems related to the analysis of prospective diagnostic trials. The short-term goal of this research is to develop informatics tools to validate diagnostic systems such as breast cancer mammography and functional magnetic resonance imaging. The long-term goal is to develop efficient ways for better analyzing clustered data and utilizing prior knowledge in multi-center clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Cooperative Agreements (U41)
Project #
5U41RR019703-02
Application #
7360397
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
2
Fiscal Year
2006
Total Cost
$20,170
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Schmidt, Ehud J; Halperin, Henry R (2018) MRI use for atrial tissue characterization in arrhythmias and for EP procedure guidance. Int J Cardiovasc Imaging 34:81-95
George, E; Liacouras, P; Lee, T C et al. (2017) 3D-Printed Patient-Specific Models for CT- and MRI-Guided Procedure Planning. AJNR Am J Neuroradiol 38:E46-E47
Mitsouras, Dimitris; Lee, Thomas C; Liacouras, Peter et al. (2017) Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation. Magn Reson Med 77:613-622
Guenette, Jeffrey P; Himes, Nathan; Giannopoulos, Andreas A et al. (2016) Computer-Based Vertebral Tumor Cryoablation Planning and Procedure Simulation Involving Two Cases Using MRI-Visible 3D Printing and Advanced Visualization. AJR Am J Roentgenol 207:1128-1131
Mitsouras, Dimitris; Mulkern, Robert V; Maier, Stephan E (2016) Multicomponent T2 relaxation studies of the avian egg. Magn Reson Med 75:2156-64
Li, Mao; Miller, Karol; Joldes, Grand Roman et al. (2016) Biomechanical model for computing deformations for whole-body image registration: A meshless approach. Int J Numer Method Biomed Eng 32:
Schmidt, Ehud J; Watkins, Ronald D; Zviman, Menekhem M et al. (2016) A Magnetic Resonance Imaging-Conditional External Cardiac Defibrillator for Resuscitation Within the Magnetic Resonance Imaging Scanner Bore. Circ Cardiovasc Imaging 9:
Patil, Vaibhav; Gupta, Rajiv; San José Estépar, Raúl et al. (2015) Smart stylet: the development and use of a bedside external ventricular drain image-guidance system. Stereotact Funct Neurosurg 93:50-8
Garlapati, Revanth Reddy; Mostayed, Ahmed; Joldes, Grand Roman et al. (2015) Towards measuring neuroimage misalignment. Comput Biol Med 64:12-23
Lu, Yi; Yeung, Cecil; Radmanesh, Alireza et al. (2015) Comparative effectiveness of frame-based, frameless, and intraoperative magnetic resonance imaging-guided brain biopsy techniques. World Neurosurg 83:261-8

Showing the most recent 10 out of 261 publications