This application proposes a renewal of the Mouse Mutant Resource and Research Center (MMRRC) at The Jackson Laboratory. Highly sophisticated genome engineering technologies, a well-characterized genome, mammalian physiology and economical husbandry requirements make laboratory mice the mainstay of biomedical research on disease mechanism and for disease modeling. The NIH has recognized that the potential impact of genetically engineered mice for biomedical research cannot be fully realized without a centralized effort to identify, archive, evaluate, characterize, and distribute valuable strains of mice to qualified biomedical researchers. The MMRRC provides this centralized repository function. With over 80 years of mouse genetics and mouse resource experience, The Jackson Laboratory joined the MMRRC in 2009 and since has been a key member of the consortium. This proposal requests on-going support for The Jackson Laboratory as one of the four MMRRC core repositories. As a member of the MMRRC consortium, the Jackson Laboratory will contribute to the development and improvement of consortium wide standard operating procedures. The MMRRC at JAX will follow these mutually agreed upon standard operating procedures to fulfill the goals importation, archiving (through cryopreservation of sperm and/or embryos) and distribution of biomedically important strains of mice and related materials. The MMRRC at JAX also provides related services on a fee for service basis and conducts high risk high return research and model development projects that fit within the overall goals of the consortium.

Public Health Relevance

The laboratory mouse remains the most powerful model organism for biomedical research due to its shared mammalian physiology and its well-characterized and accessible genome. Advances in DNA sequencing technologies and tools for genetic engineering mean that the laboratory mouse can now be engineered with unprecedented speed and sophistication; such that now, more than ever, scientists are relying on laboratory mice not only for basic research on disease mechanism but also for direct modeling of human genetic mutations in the context of complex mammalian physiology, gene-by-genome interactions and pre-clinical drug testing. The Mutant Mouse Resource and Research Center at The Jackson Laboratory provides a biorepository for these valuable mouse models for the research community and leadership for best practices in mouse genetics, model development, and research reproducibility.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Materials Resource Cooperative Agreements (U42)
Project #
5U42OD010921-12
Application #
10101703
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mirochnitchenko, Oleg
Project Start
2010-01-01
Project End
2025-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
12
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Montonye, Dan R; Ericsson, Aaron C; Busi, Susheel B et al. (2018) Acclimation and Institutionalization of the Mouse Microbiota Following Transportation. Front Microbiol 9:1085
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Lilue, Jingtao; Doran, Anthony G; Fiddes, Ian T et al. (2018) Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet 50:1574-1583
Lutz, Cathleen (2017) A license to cure? Lab Anim (NY) 46:162-163
Peterson, Kevin A; Beane, Glen L; Goodwin, Leslie O et al. (2017) CRISPRtools: a flexible computational platform for performing CRISPR/Cas9 experiments in the mouse. Mamm Genome 28:283-290
Willmann, Raffaella; Gordish-Dressman, Heather; Meinen, Sarina et al. (2017) Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-?2 Related Congenital Muscular Dystrophy. J Neuromuscul Dis 4:115-126
Liu, Edison T; Bolcun-Filas, Ewelina; Grass, David S et al. (2017) Of mice and CRISPR: The post-CRISPR future of the mouse as a model system for the human condition. EMBO Rep 18:187-193
Manolio, Teri A; Fowler, Douglas M; Starita, Lea M et al. (2017) Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell 169:6-12
Lloyd, Kent; Franklin, Craig; Lutz, Cat et al. (2015) Reproducibility: use mouse biobanks or lose them. Nature 522:151-3
Srivastava, Anuj; Philip, Vivek M; Greenstein, Ian et al. (2014) Discovery of transgene insertion sites by high throughput sequencing of mate pair libraries. BMC Genomics 15:367

Showing the most recent 10 out of 13 publications