This application proposes a renewal of the Mouse Mutant Resource and Research Center (MMRRC) at The Jackson Laboratory. Highly sophisticated genome engineering technologies, a well-characterized genome, mammalian physiology and economical husbandry requirements make laboratory mice the mainstay of biomedical research into disease mechanism and for disease modeling. The NIH has recognized that the potential impact of genetically engineered mice for biomedical research cannot be fully realized without a centralized effort to identify, archive, evaluate, characterize, and distribute valuable strains of mice to qualified biomedical researchers. The MMRRC provides this centralized repository function. With 90 years of mouse genetics and mouse resource experience, The Jackson Laboratory joined the MMRRC in 2009 and remains a key member of the consortium. This proposal requests on-going support for The Jackson Laboratory as one of the four MMRRC core repositories. As a member of the MMRRC consortium, the Jackson Laboratory will contribute to the development and improvement of consortium-wide standard operating procedures. The MMRRC at JAX will follow these mutually agreed upon standard operating procedures in its efforts to import, archive (through cryopreservation of sperm and/or embryos) and distribute biomedically important strains of mice and related materials. The MMRRC at JAX will also provide related services on a fee for service basis and will conduct high-risk, high-return research projects that augment the overall goals of the consortium.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jackson Laboratory
Bar Harbor
United States
Zip Code
Lilue, Jingtao; Doran, Anthony G; Fiddes, Ian T et al. (2018) Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet 50:1574-1583
Montonye, Dan R; Ericsson, Aaron C; Busi, Susheel B et al. (2018) Acclimation and Institutionalization of the Mouse Microbiota Following Transportation. Front Microbiol 9:1085
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Lutz, Cathleen (2017) A license to cure? Lab Anim (NY) 46:162-163
Peterson, Kevin A; Beane, Glen L; Goodwin, Leslie O et al. (2017) CRISPRtools: a flexible computational platform for performing CRISPR/Cas9 experiments in the mouse. Mamm Genome 28:283-290
Willmann, Raffaella; Gordish-Dressman, Heather; Meinen, Sarina et al. (2017) Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-?2 Related Congenital Muscular Dystrophy. J Neuromuscul Dis 4:115-126
Liu, Edison T; Bolcun-Filas, Ewelina; Grass, David S et al. (2017) Of mice and CRISPR: The post-CRISPR future of the mouse as a model system for the human condition. EMBO Rep 18:187-193
Manolio, Teri A; Fowler, Douglas M; Starita, Lea M et al. (2017) Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell 169:6-12
Lloyd, Kent; Franklin, Craig; Lutz, Cat et al. (2015) Reproducibility: use mouse biobanks or lose them. Nature 522:151-3
Srivastava, Anuj; Philip, Vivek M; Greenstein, Ian et al. (2014) Discovery of transgene insertion sites by high throughput sequencing of mate pair libraries. BMC Genomics 15:367

Showing the most recent 10 out of 13 publications