The innate immune response is dependent upon a discrete collection of proteins that mediate the detection of microbial invaders and their elimination. Only a handful of these proteins are known at present, and among them, the Toll-like receptors and associated signaling proteins play a prominent role as sensors. The program of which this Bridging proposal is a part will permit the identification of many critical genes involved in the innate immune response. We propose to examine each of these genes in turn, starting with the Toll-like receptors and moving to new genes as they are discovered. Our ultimate goal is to determine whether mutations at these loci contribute to susceptibility to sepsis in humans, or influence the outcome of sepsis once it is established. The approach taken is one in which modem techniques for mutation detection will be used to assay genetic load within the coding region at each locus, in disease populations and in ethnically matched control populations. In particular, we will emphasize the use of advanced methods for mutation detection, coupled with high-throughput sequencing to achieve this end. In accordance with the emerging principle that most complex human diseases may be ascribed to low-frequency codominant mutations affecting multiple loci, it is expected that mutations will be over-represented in specific loci within a disease population, given that those loci encode genes that are important in fighting infection. Preliminary work has supported this principle as it applies to the TLR4 locus in meningococcal disease: there is a significant excess ofmissense mutations at this locus in the disease population, compared with controls. We intend to generalize the principle, seeking to establish the importance of rare mutations at multiple loci in the pathogenesis of diverse infections. This proposal will entail extensive interactions between the Forward Genetics Core, the Genomics Core, and the Sequencing Core. Mutational data bearing on the involvement of specific genes in sepsis will quickly be disseminated to the scientific community at large through a webbased information system. Ultimately, these studies may foretell susceptibility to infection, and explain the strong heritability of infectious diseases in molecular terms.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54AI054523-01
Application #
6681425
Study Section
Special Emphasis Panel (ZGM1)
Project Start
2002-09-30
Project End
2007-07-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Tabeta, Koichi; Du, Xin; Arimatsu, Kei et al. (2017) An ENU-induced splice site mutation of mouse Col1a1 causing recessive osteogenesis imperfecta and revealing a novel splicing rescue. Sci Rep 7:11717
Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R et al. (2015) Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation. J Immunol 194:2587-95
Siggs, Owen M; Yates, Adèle L; Schlenner, Susan et al. (2014) A ZAP-70 kinase domain variant prevents thymocyte-positive selection despite signalling CD69 induction. Immunology 141:587-95
Wang, James Q; Jeelall, Yogesh S; Beutler, Bruce et al. (2014) Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance. J Exp Med 211:413-26
Cho, Vicky; Mei, Yan; Sanny, Arleen et al. (2014) The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA. Genome Biol 15:R26
Altin, John A; Daley, Stephen R; Howitt, Jason et al. (2014) Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4+ T cells. Proc Natl Acad Sci U S A 111:2067-74
Crawford, Greg; Enders, Anselm; Gileadi, Uzi et al. (2013) DOCK8 is critical for the survival and function of NKT cells. Blood 122:2052-61
Teh, C E; Horikawa, K; Arnold, C N et al. (2013) Heterozygous mis-sense mutations in Prkcb as a critical determinant of anti-polysaccharide antibody formation. Genes Immun 14:223-33
Andrews, T D; Sjollema, G; Goodnow, C C (2013) Understanding the immunological impact of the human mutation explosion. Trends Immunol 34:99-106
Enders, Anselm; Stankovic, Sanda; Teh, Charis et al. (2012) ZBTB7B (Th-POK) regulates the development of IL-17-producing CD1d-restricted mouse NKT cells. J Immunol 189:5240-9

Showing the most recent 10 out of 46 publications