Our overall goal for this research plan is to use a mouse model system for pneumonic plague to discover and evaluate Y. pestis genes critical for the development and progression of disease. We will pinpoint these candidates using two methods: transcriptional profiling to reveal genes that are differentially regulated in the various stages of pneumonic plague;and forward genetics approaches to screen/select for Y. pestis genes that are indispensable for development of pulmonary disease.
Specific Aim 1. Comparative transcriptional responses by Y. pestis during the stages of pneumonic plague. We previously developed a whole genome microarray to characterize the bacterial transcriptome during pneumonic plague, but this analysis was technically limited to a late stage of infection. Therefore, we will use quantitative RT-PCR to examine a subset of Y. peso's genes throughout the entire time course of disease. This subset of approximately 250 genes is based on genes that show evidence of differential expression during infection, as well as genes that were not sufficiently explored by microarray technology.
Specific Aim 2. Forward genetics to identify bacterial genes important in the development of pneumonic plague. Transposon site hybridization (TraSH) is a gene discovery strategy using negative selection to dentify bacterial genes that are essential during infection. The microarrays we have constructed will allow us to take advantage of a a TraSH-based approach using array hybridizations to identify Y. pestis genes triplicated in various stages of the pulmonary infection.
Specific Aim 3. Analyzing the importance and role of candidate virulence-associated genes. The genes selected in the first two Aims will be targeted for further analysis by creating defined mutant strains of Y. pestis. Mutant and control strains will be tested for virulence in the murine model of pneumonic plague, monitoring bacterial proliferation in the lung, dissemination to the spleen, and histopathology to evaluate differences in the manifestation or kinetics of disease. The characterization of mutant strains will be extended to a microarray analysis of host transcriptional responses during infection, done in collaboration with Dr. Virginia Miller.

Public Health Relevance

neumonic plague is considered the greatest threat by Y. pestis with respect to potential bioterrorism, since :he disease is transmitted by aerosol, progresses rapidly, and is. invariably fatal if not treated quickly. This Research Plan combines genomic and genetic approaches with a robust animal model, providing a comprehensive approach for developing new therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057157-08
Application #
8036032
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
8
Fiscal Year
2010
Total Cost
$302,610
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Dethoff, Elizabeth A; Boerneke, Mark A; Gokhale, Nandan S et al. (2018) Pervasive tertiary structure in the dengue virus RNA genome. Proc Natl Acad Sci U S A 115:11513-11518
Graham, Rachel L; Deming, Damon J; Deming, Meagan E et al. (2018) Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol 1:179
Qi, Xiaoxuan; Wang, Wenjian; Dong, Haohao et al. (2018) Expression and X-Ray Structural Determination of the Nucleoprotein of Lassa Fever Virus. Methods Mol Biol 1604:179-188
Kocher, Jacob F; Lindesmith, Lisa C; Debbink, Kari et al. (2018) Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. MBio 9:
Dhanwani, Rekha; Huang, Qinfeng; Lan, Shuiyun et al. (2018) Establishment of Bisegmented and Trisegmented Reverse Genetics Systems to Generate Recombinant Pichindé Viruses. Methods Mol Biol 1604:247-253
Shao, Junjie; Liu, Xiaoying; Liang, Yuying et al. (2018) Assays to Assess Arenaviral Glycoprotein Function. Methods Mol Biol 1604:169-178
Huang, Qinfeng; Shao, Junjie; Liang, Yuying et al. (2018) Assays to Demonstrate the Roles of Arenaviral Nucleoproteins (NPs) in Viral RNA Synthesis and in Suppressing Type I Interferon. Methods Mol Biol 1604:189-200
Gunn, Bronwyn M; Jones, Jennifer E; Shabman, Reed S et al. (2018) Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 515:250-260
Shao, Junjie; Liang, Yuying; Ly, Hinh (2018) Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression. Methods Mol Biol 1604:217-227
Wirawan, Melissa; Fibriansah, Guntur; Marzinek, Jan K et al. (2018) Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody. Structure :

Showing the most recent 10 out of 400 publications