Henipaviruses show increasing impact as causes of central nervous system illness in the human community. We propose to apply our understanding of paramyxovirus entry to the development of new strategies for inhibiting infection that will apply to newly emerging paramyxoviruses. The first step in paramyxovirus infection is the binding of the receptor-binding protein (G for Hendra and Nipah viruses; HeV/NiV) to receptor on the cell's surface (EFNB2 for HeV/NiV). Receptor engagement activates the viral fusion proteins (F) to fusion-ready conformation, and F then inserts into the target cell membrane, fusing the viral envelope with the cell's membrane and allowing viral entry. In a novel therapeutic approach, we will identify compounds that induce F to trigger prematurely, inactivating the viruses before they can enter the target cells. 1. Proof of concept for new antiviral platform: Paramyxovirus receptor mimics induce premature triggering of F distant from the target cell.
This aim will test the hypothesis that if G-receptor interaction can be mimicked before an infectious viral particle binds to the cell surface, F can be induced to be triggered prematurely and be inactivated. We will assess whether soluble receptor-mimicking molecules inhibit multicycle replication in relevant tissue models for human vascular endothelium and for human CMS parenchymal cells. Support of this aim includes evidence for 'premature triggering' of F for a related paramyxovirus, and that receptor-coated microparticles irreversibly inactivate pseudotyped henipaviral particles. 2. High-throughput screening (HTS) of a chemical library for compounds that stimulate untimely activation of viral fusion mechanisms. We have developed a novel assay for multicycle replication of HeV/NiV pseudotypes, and screening assays for neutralizing antibodies and antiviral compounds (now adapted to HTS). To identify compounds that may stimulate untimely activation of viral fusion mechanisms we will assess compounds specifically for premature triggering activity. Effective compounds will then be tested vs. live virus. Structural modeling, based on new crystal structures if needed, in collaboration with W, Welsh (Snowdon, Inc.) will provide another approach to identify potential inhibitory compounds. The results will lead to: validation of a new antiviral strategy. If efficient receptor-mimics can trigger and thus inactivate F after budding and release, released virus could be rendered noninfectious and viral spread halted. Strategies devised based upon G-F interaction will likely apply to new paramyxoviruses and other pathogens that trigger the key activities of cell entry only at a specific time and place to initiate infection.

Public Health Relevance

Hendra and Nipah viruses are urgent concerns for public health due to their transmissible nature and increasing impact on acute and chronic central nervous system disease. This research proposal will lead to a new antiviral strategy that will apply to henipaviruses, existing and emerging paramyxoviruses as well as other enveloped viruses. The results will be highly relevant in light of the importance of paramyxoviruses to human health and the potential broad applicability of the new platform to these and other serious pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057158-08
Application #
8302529
Study Section
Special Emphasis Panel (ZAI1-DDS-M (J1))
Project Start
2011-03-01
Project End
2014-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
8
Fiscal Year
2011
Total Cost
$321,844
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Li, Xiao-Ping; Kahn, Jennifer N; Tumer, Nilgun E (2018) Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding. Toxins (Basel) 10:
Goldman, David L; Nieves, Edward; Nakouzi, Antonio et al. (2018) Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase. mSphere 3:
Marié, Isabelle J; Chang, Hao-Ming; Levy, David E (2018) HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 215:3194-3212
Uhde, Melanie; Ajamian, Mary; Wormser, Gary P et al. (2017) Reply to Naktin. Clin Infect Dis 64:1145-1146
Chen, Han; Coseno, Molly; Ficarro, Scott B et al. (2017) A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. ACS Infect Dis 3:112-118
Aguilar, Jorge L; Varshney, Avanish K; Pechuan, Ximo et al. (2017) Monoclonal antibodies protect from Staphylococcal Enterotoxin K (SEK) induced toxic shock and sepsis by USA300 Staphylococcus aureus. Virulence 8:741-750
Zhou, Yijun; Li, Xiao-Ping; Chen, Brian Y et al. (2017) Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 7:42912
Taylor, Travis J; Diaz, Fernando; Colgrove, Robert C et al. (2016) Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector. Virology 496:186-193
Steyer, Andrej; Jevšnik, Monika; Petrovec, Miroslav et al. (2016) Narrowing of the Diagnostic Gap of Acute Gastroenteritis in Children 0-6 Years of Age Using a Combination of Classical and Molecular Techniques, Delivers Challenges in Syndromic Approach Diagnostics. Pediatr Infect Dis J 35:e262-70
Song, Jeongmin; Wilhelm, Cara L; Wangdi, Tamding et al. (2016) Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi. Cell 164:827-8

Showing the most recent 10 out of 655 publications