Emerging and re-emerging pathogens such as HIV, prions, MRSA, XDR Tb, West Nile, hendra- and nipah, metapneumo-, calici-, hanta-, Ebola-, Marburg-, corona-, influenza-, chikungunya- and rhinoviruses, are sculpting a new landscape for public health and clinical medicine. This phenomenon has been ascribed to the destruction of natural habitats;political instability and poverty;climate change;the increased susceptibility to infection of an aging population or one immunosuppressed by HIV, cancer or transplantation;increasing population density;and inappropriate use of antibiotics. With globalization of travel and trade, microbes, vectors and reservoirs do not remain geographically discrete. Point source infections can rapidly become outbreaks or distribute even more broadly to become pandemics. Thus, clinicians and public health practitioners must be prepared for the appearance of new pathogens, new syndromes, as well as known syndromes due to known pathogens in new contexts. Classical culture techniques, immunohistochemistry, EM, and serology are vital in pathogen discovery as well as diagnostic clinical microbiology;nonetheless, molecular methods are increasingly employed due to speed, lower cost and the capacity to succeed in instances where fastidious requirements confound cultivation. We have established a staged strategy that enables rapid identification of emerging as well as known pathogens. This strategy will be used to investigate unexplained hemorrhagic fevers, unexplained encephalitis and meningoencephalitis, and unexplained febrile illness in

Public Health Relevance

Early and accurate differential diagnosis of infectious diseases is critical in clinical medicine and public health. The aims described here will enhance our ability to detect and rapidly characterize novel infectious agents, naturally emergent or deliberately engineered, and provide insights into unexplained acute infectious diseases. In so doing they will inform and focus investments in animal models, antivirals and antibiotics, therapeutic monoclonal antibodies and vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057158-10
Application #
8444624
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2015-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$484,370
Indirect Cost
$36,327
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Li, Xiao-Ping; Kahn, Jennifer N; Tumer, Nilgun E (2018) Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding. Toxins (Basel) 10:
Goldman, David L; Nieves, Edward; Nakouzi, Antonio et al. (2018) Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase. mSphere 3:
Marié, Isabelle J; Chang, Hao-Ming; Levy, David E (2018) HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 215:3194-3212
Uhde, Melanie; Ajamian, Mary; Wormser, Gary P et al. (2017) Reply to Naktin. Clin Infect Dis 64:1145-1146
Chen, Han; Coseno, Molly; Ficarro, Scott B et al. (2017) A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. ACS Infect Dis 3:112-118
Aguilar, Jorge L; Varshney, Avanish K; Pechuan, Ximo et al. (2017) Monoclonal antibodies protect from Staphylococcal Enterotoxin K (SEK) induced toxic shock and sepsis by USA300 Staphylococcus aureus. Virulence 8:741-750
Zhou, Yijun; Li, Xiao-Ping; Chen, Brian Y et al. (2017) Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 7:42912
Lauretti, Flavio; Chattopadhyay, Anasuya; de Oliveira França, Rafael Freitas et al. (2016) Recombinant vesicular stomatitis virus-based dengue-2 vaccine candidate induces humoral response and protects mice against lethal infection. Hum Vaccin Immunother 12:2327-33
Tadin, Ante; Tokarz, Rafal; Markoti?, Alemka et al. (2016) Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia. Am J Trop Med Hyg 94:466-73
Basu, Debaleena; Li, Xiao-Ping; Kahn, Jennifer N et al. (2016) The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1. Infect Immun 84:149-61

Showing the most recent 10 out of 655 publications