Henipaviruses show increasing impact as causes of central nervous system illness in the human community. We propose to apply our understanding of paramyxovirus entry to the development of new strategies for inhibiting infection that will apply to newly emerging paramyxoviruses. The first step in paramyxovirus infection is the binding of the receptor-binding protein (G for Hendra and Nipah viruses;HeV/NiV) to receptor on the cell's surface (EFNB2 for HeV/NiV). Receptor engagement activates the viral fusion proteins (F) to fusion-ready conformation, and F then inserts into the target cell membrane, fusing the viral envelope with the cell's membrane and allowing viral entry. In a novel therapeutic approach, we will identify compounds that induce F to trigger prematurely, inactivating the viruses before they can enter the target cells. 1. Proof of concept for new antiviral platform: Paramyxovirus receptor mimics induce premature triggering of F distant from the target cell.
This aim will test the hypothesis that if G-receptor interaction can be mimicked before an infectious viral particle binds to the cell surface, F can be induced to be triggered prematurely and be inactivated. We will assess whether soluble receptor-mimicking molecules inhibit multicycle replication in relevant tissue models for human vascular endothelium and for human CMS parenchymal cells. Support of this aim includes evidence for

Public Health Relevance

Hendra and Nipah viruses are urgent concerns for public health due to their transmissible nature and increasing impact on acute and chronic central nervous system disease. This research proposal will lead to a new antiviral strategy that will apply to henipaviruses, existing and emerging paramyxoviruses as well as other enveloped viruses. The results will be highly relevant in light of the importance of paramyxoviruses to human health and the potential broad applicability of the new platform to these and other serious pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057158-10
Application #
8444625
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2015-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$278,483
Indirect Cost
$20,886
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Li, Xiao-Ping; Kahn, Jennifer N; Tumer, Nilgun E (2018) Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding. Toxins (Basel) 10:
Goldman, David L; Nieves, Edward; Nakouzi, Antonio et al. (2018) Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase. mSphere 3:
Marié, Isabelle J; Chang, Hao-Ming; Levy, David E (2018) HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 215:3194-3212
Uhde, Melanie; Ajamian, Mary; Wormser, Gary P et al. (2017) Reply to Naktin. Clin Infect Dis 64:1145-1146
Chen, Han; Coseno, Molly; Ficarro, Scott B et al. (2017) A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. ACS Infect Dis 3:112-118
Aguilar, Jorge L; Varshney, Avanish K; Pechuan, Ximo et al. (2017) Monoclonal antibodies protect from Staphylococcal Enterotoxin K (SEK) induced toxic shock and sepsis by USA300 Staphylococcus aureus. Virulence 8:741-750
Zhou, Yijun; Li, Xiao-Ping; Chen, Brian Y et al. (2017) Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 7:42912
Lauretti, Flavio; Chattopadhyay, Anasuya; de Oliveira França, Rafael Freitas et al. (2016) Recombinant vesicular stomatitis virus-based dengue-2 vaccine candidate induces humoral response and protects mice against lethal infection. Hum Vaccin Immunother 12:2327-33
Tadin, Ante; Tokarz, Rafal; Markoti?, Alemka et al. (2016) Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia. Am J Trop Med Hyg 94:466-73
Basu, Debaleena; Li, Xiao-Ping; Kahn, Jennifer N et al. (2016) The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1. Infect Immun 84:149-61

Showing the most recent 10 out of 655 publications