This is a continuation of RP6 of the prior MRCE program, now presented as RP5 of a PPG (RP4-RP8) to analyze the mechanisms responsible for the broad spectrum activities of interferons (IFNs) against priority pathogens. While much is known about IFN signaling, less is known about the IFN-induced effector mechanisms that control infection. We speculate that direct manipulation of specific IFN effector mechanisms may provide broad protection without the toxicity associated with IFN administration. Our goal was two-pronged: (i) to discover novel IFN-induced antiviral molecules, and (ii) to define their importance, biochemistry, and mechanisms. We identified ISG15 as an IFN-induced anti-viral molecule, proved it's broad antiviral role, identified host proteins and ISG15 residues essential for its antiviral function, and identified a novel immune evasion strategy used by several viruses including Crimean Congo Hemorrhagic Fever Virus to counter ISG15-and ubiquitin-dependent innate immunity. While analyzing ISG15, we continued the discovery process, identifying the autophagy gene ATG5 as essential for IFNy-induced control of infection with Listeria monocytogenes (LM), Toxoplasma gondii (TG), and murine norovirus (MNV). We propose to continue this two two-prong approach to mechanism and discovery through the following Aims:
Aim 1 : IFN-induced effector molecule mechanisms: Focus on autophagy. 1a) Assess the generality of the importance of Atg5 and Atg7 in control of infection with priority pathogens. 1b) Determine whether autophagy proteins Atg5 and Atg7 are required for IFNa-mediated inhibition of viral growth. 1c) Define the mechanisms responsible for the importance of Atg5/7/autophagy in IFN-induced control of pathogen replication. 1d) Identify signaling mechanisms by which IFNy regulates autophagy.
Aim 2 : IFN-induced effector molecule identification. 2a) Define the transcriptional signature of IFNa and IFNy in primary macrophages. 2b) Screen candidate IFN-induced effector molecules for antiviral activities in vivo and in vitro. 2c) Generate and analyze mice lacking candidate antiviral molecules.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Stevenson, Taylor C; Cywes-Bentley, Colette; Moeller, Tyler D et al. (2018) Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc Natl Acad Sci U S A 115:E3106-E3115
Kinkead, Lauren C; Whitmore, Laura C; McCracken, Jenna M et al. (2018) Bacterial lipoproteins and other factors released by Francisella tularensis modulate human neutrophil lifespan: Effects of a TLR1 SNP on apoptosis inhibition. Cell Microbiol 20:
Kinkead, Lauren C; Fayram, Drew C; Allen, Lee-Ann H (2017) Francisella novicida inhibits spontaneous apoptosis and extends human neutrophil lifespan. J Leukoc Biol 102:815-828
Zhao, Guoyan; Wu, Guang; Lim, Efrem S et al. (2017) VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503:21-30
Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga et al. (2017) TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions. MBio 8:
Teijaro, John R; Studer, Sean; Leaf, Nora et al. (2016) S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-? autoamplification. Proc Natl Acad Sci U S A 113:1351-6
Lubman, Olga Y; Fremont, Daved H (2016) Parallel Evolution of Chemokine Binding by Structurally Related Herpesvirus Decoy Receptors. Structure 24:57-69
Miao, Chunhui; Li, Minghua; Zheng, Yi-Min et al. (2016) Cell-cell contact promotes Ebola virus GP-mediated infection. Virology 488:202-15
Rhein, Bethany A; Brouillette, Rachel B; Schaack, Grace A et al. (2016) Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry. J Virol 90:6097-6111
Chen, Linxiao; Valentine, Jenny L; Huang, Chung-Jr et al. (2016) Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc Natl Acad Sci U S A 113:E3609-18

Showing the most recent 10 out of 338 publications