Enveloped viruses are formed by a budding process that often requires participation of host proteins. Retroviruses, rhabdoviruses, and filoviruses all use similar late domain sequences within the viral proteins to recruit host factors for budding. Although paramyxoviruses generally lack the same late domain sequences used by these viruses, we have obtained evidence that paramyxoviruses, similar to other enveloped viruses, likely recruit host factors for budding. The viral protein:host protein binding interfaces used during virus budding have the potential to be effective as targets for antiviral drug design. Hendra and Nipah viruses (Henipaviruses) are recently emerged, zoonotic paramyxoviruses that are deadly to humans. Although progress has been made in characterizing the entry mechanisms for these viruses, very little is known about mechanisms of Henipavirus budding. We propose to take advantage of our expertise in the field of paramyxovirus budding by conducting experiments with the following aims: 1. Define requirements for Henipavirus particle production. We have established virus-like particle (VLP) assembly systems for Hendra and Nipah virus. We will define which Henipavirus proteins are important for VLP production, and hence which proteins may play roles in the recruitment of host factors for budding. 2. Identify host factors involved in Henipavirus budding. Two independent strategies will be employed: co-affinity purification of host proteins from Henipavirus VLPs, and yeast two-hybrid screening. An siRNAbased secondary screen will determine which candidate binding proteins are actually important for budding. 3. Define host and viral targets for antiviral drug development. Binding interfaces between viral and host proteins will be mapped. Minimal binding fragments of host proteins will be tested for the ability to block virus budding, similar to the effect analogous fragments have on retrovirus and parainfluenza virus 5 (PIV5) budding.

Public Health Relevance

Paramyxoviruses cause a wide range of human and animal diseases. Henipavirus infections are lethal to humans, and the probability that these viruses can adapt to spread efficient between human hosts is unknown. A better understanding of paramyxovirus budding will contribute towards the development of antiviral drugs that target this step of the virus lifecycle.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
United States
Zip Code
Champion, Anna E; Bandara, Aloka B; Mohapatra, Nrusingh et al. (2018) Further Characterization of the Capsule-Like Complex (CLC) Produced by Francisella tularensis Subspecies tularensis: Protective Efficacy and Similarity to Outer Membrane Vesicles. Front Cell Infect Microbiol 8:182
Bridge, Dacie R; Blum, Faith C; Jang, Sungil et al. (2017) Creation and Initial Characterization of Isogenic Helicobacter pylori CagA EPIYA Variants Reveals Differential Activation of Host Cell Signaling Pathways. Sci Rep 7:11057
Kaempfer, Raymond; Popugailo, Andrey; Levy, Revital et al. (2017) Bacterial superantigen toxins induce a lethal cytokine storm by enhancing B7-2/CD28 costimulatory receptor engagement, a critical immune checkpoint. Receptors Clin Investig 4:
Molleston, Jerome M; Cherry, Sara (2017) Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses 9:
Cifuentes-Muñoz, Nicolás; Sun, Weina; Ray, Greeshma et al. (2017) Mutations in the Transmembrane Domain and Cytoplasmic Tail of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly. J Virol 91:
Sarute, Nicolás; Ross, Susan R (2017) New World Arenavirus Biology. Annu Rev Virol 4:141-158
Ramachandran, Girish; Aheto, Komi; Shirtliff, Mark E et al. (2016) Poor biofilm-forming ability and long-term survival of invasive Salmonella Typhimurium ST313. Pathog Dis 74:
Wahid, Rezwanul; Fresnay, Stephanie; Levine, Myron M et al. (2016) Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol 173:87-95
Li, Huiguang; Hwang, Young; Perry, Kay et al. (2016) Structure and Metal Binding Properties of a Poxvirus Resolvase. J Biol Chem 291:11094-104
Chou, Yi-Ying; Cuevas, Christian; Carocci, Margot et al. (2016) Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor. J Virol 90:4494-4510

Showing the most recent 10 out of 375 publications