PROJECT 3: Type III secretion (TTS) represents one of the most complex mechanisms of protein translocation in biology. It also provides a striking example of the ability of pathogenic bacteria to manipulate their eukaryotic hosts. Since TTS control systems are almost always coupled to global regulatory factors that control virulence, understanding how TTS is regulated provides an expedient means to identify previously unknown determinants of pathogenesis. The goals of this project are to conduct a comprehensive assessment of the role in pathogenesis of TTS by B. pseudomallei and to use an understanding of the regulation of TTS to identify additional, unlinked virulence factors.
Two aims are proposed:
Aim 1. Characterize the relative roles of TTS1, TTS2 and TTS3 in B. pseudomallei-bost interactions. Deletion mutagenesis will be used to inactivate each TTSS individually and in combination. An array of assays will be used to evaluate the effects of mutational alterations on host-cell interactions in vitro and the establishment of infection, persistence, immunity and disease in murine models of infection.
Aim 2. Characterize the regulatory mechanisms that control the expression of TTS loci and identify novel determinants of virulence. We will determine how TTS gene clusters are regulated and we will identify global regulatory factors with the potential to control multiple virulence determinants. Phenotypes resulting from mutations in regulatory loci will be evaluated in vitro and in vivo. We will also use an understanding of local and global regulatory circuitry to identify TTS effector molecules and co-regulated loci with the potential to encode novel determinants of virulence.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI065359-03
Application #
7558746
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
3
Fiscal Year
2007
Total Cost
$295,650
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Tsai, Wen-Yang; Youn, Han Ha; Tyson, Jasmine et al. (2018) Use of Urea Wash ELISA to Distinguish Zika and Dengue Virus Infections. Emerg Infect Dis 24:1355-1359
Thongsripong, Panpim; Chandler, James Angus; Green, Amy B et al. (2018) Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol Evol 8:1352-1368
Katzelnick, Leah C; Ben-Shachar, Rotem; Mercado, Juan Carlos et al. (2018) Dynamics and determinants of the force of infection of dengue virus from 1994 to 2015 in Managua, Nicaragua. Proc Natl Acad Sci U S A 115:10762-10767
Clemens, Daniel L; Lee, Bai-Yu; Horwitz, Marcus A (2018) The Francisella Type VI Secretion System. Front Cell Infect Microbiol 8:121
Nualnoi, Teerapat; Norris, Michael H; Tuanyok, Apichai et al. (2017) Development of Immunoassays for Burkholderia pseudomallei Typical and Atypical Lipopolysaccharide Strain Typing. Am J Trop Med Hyg 96:358-367
Parameswaran, Poornima; Wang, Chunling; Trivedi, Surbhi Bharat et al. (2017) Intrahost Selection Pressures Drive Rapid Dengue Virus Microevolution in Acute Human Infections. Cell Host Microbe 22:400-410.e5
Bortell, Nikki; Flynn, Claudia; Conti, Bruno et al. (2017) Osteopontin Impacts West Nile virus Pathogenesis and Resistance by Regulating Inflammasome Components and Cell Death in the Central Nervous System at Early Time Points. Mediators Inflamm 2017:7582437
Hertz, Tomer; Beatty, P Robert; MacMillen, Zachary et al. (2017) Antibody Epitopes Identified in Critical Regions of Dengue Virus Nonstructural 1 Protein in Mouse Vaccination and Natural Human Infections. J Immunol 198:4025-4035
Barbour, Alan G (2017) Infection resistance and tolerance in Peromyscus spp., natural reservoirs of microbes that are virulent for humans. Semin Cell Dev Biol 61:115-122
Huwyler, Camille; Heiniger, Nadja; Chomel, Bruno B et al. (2017) Dynamics of Co-Infection with Bartonella henselae Genotypes I and II in Naturally Infected Cats: Implications for Feline Vaccine Development. Microb Ecol 74:474-484

Showing the most recent 10 out of 467 publications