The goal of this application is to establish the Pacific Northwest Regional Center of Excellence (PNWRCE) in NIAID Region X. The two inter-related but distinct PNWRCE themes that we have selected reflect not only the scientific strengths at our institutions but also the unmet needs that we perceive are absent in the NIAID biodefense and emerging disease program. The first theme """"""""Identification of Age-Related Defects in the Immune System to Develop Vaccines and Supplemental Therapies"""""""" will include two projects. The overall goal of these projects is to develop new vaccines and immune supplemental therapies for immune vulnerable populations such as aged individuals. The first project a P01 will investigate the hypothesis that certain unifying manipulations can be performed to increase T cell immunity in immune vulnerable populations to a broad group of pathogens. The second project will develop a novel and effective vaccine platform for safely immunizing both healthy and vulnerable populations against YFV. The second theme will center on """"""""The use of systems biology, functional genomics and genetics to characterize pathogen-host response for biodefense and emerging disease organisms."""""""" This theme will include four projects with the overall goal of using systems approaches to identify new targets and therapeutics for Category A-C agents. The goal of the first project a P01 is to use systems approaches to identify common host susceptibility alleles and signaling circuitry that enhance highly pathogenic pneumonic viruses and Ebola virus replication and pathogenesis and to identify key cellular targets and immune correlates that influence severe disease outcomes. The goal of the second project a P01 is focused on defining innate immune mechanisms, therapeutic targets, and antiviral compounds that limit flavivirus infection and pathogenesis. The third project an R01 will use systems approaches to characterize Francisella mutants that exhibit either altered intracellular growth rates or induce cellular apoptosis. The last project an RO1 will use a combination of genetic, biochemical, and computational approaches to elucidate B. pseudomallei host pathogen response during both the septicemic as well as the intracellular phases of the disease.
One focus of this application is to identify age-related immune system defects to develop new vaccines and supplemental therapies to enhance protection of individuals to NIAID Category A-C pathogens. A second goal of this center is to use systems genetic, chemical, and proteomics approaches to identify therapeutic targets for biodefense and emerging diseases.
Showing the most recent 10 out of 127 publications