The purpose of the Animal Core is to provide investigators on this Molecular Targets Program access to mouse models of human tumors and to the technical expertise needed to perform these animal experiments. In the initial years of this grant, the mouse studies will involve pharmacokinetic/pharmacodynamic (PKJPD) evaluations of the drugs and their associated molecular targets as discussed in the specific projects. In future years, as new agents are presented, the Animal Core will evaluate these for antitumor activity and perform PK/PD studies in mouse models. We will primarily use severe combined immune deficient (scid) mouse models, but other mouse systems can also be used. Dr. Charles Taylor and other investigators established a scid mouse colony at the University of Arizona in 1988. Maintaining the colony locally results in tremendous cost savings compared to purchasing scid mice from commercial vendors. The Animal Core (Core C) will provide 3 primary services to the investigators on this grant: 1. Assist with the design of experiments using scid mouse models of human tumor growth and metastasis. 2. Provide technical expertise and consistency in performing scid mouse experiments. 3. Maintain the scid mouse colony and ensure adequate availability of mice for required experiments.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54CA090821-01
Application #
6494952
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2001-07-01
Project End
2006-12-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85722
Stephen, Renu M; Pagel, Mark D; Brown, Kathy et al. (2012) Monitoring the development of xenograft triple-negative breast cancer models using diffusion-weighted magnetic resonance imaging. Exp Biol Med (Maywood) 237:1273-80
Ihle, N T; Powis, G; Kopetz, S (2011) PI-3-Kinase inhibitors in colorectal cancer. Curr Cancer Drug Targets 11:190-8
Ihle, Nathan T; Lemos Jr, Robert; Wipf, Peter et al. (2009) Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res 69:143-50
Koh, Mei Y; Spivak-Kroizman, Taly; Venturini, Sara et al. (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther 7:90-100
Baker, Amanda F; Koh, Mei Y; Williams, Ryan R et al. (2008) Identification of thioredoxin-interacting protein 1 as a hypoxia-inducible factor 1alpha-induced gene in pancreatic cancer. Pancreas 36:178-86
Bagatell, Rochelle; Gore, Lia; Egorin, Merrill J et al. (2007) Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res 13:1783-8
Powis, Garth; Wipf, Peter; Lynch, Stephen M et al. (2006) Molecular pharmacology and antitumor activity of palmarumycin-based inhibitors of thioredoxin reductase. Mol Cancer Ther 5:630-6
Baker, Amanda F; Dragovich, Tomislav; Tate, Wendy R et al. (2006) The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med 147:83-90
Raghunand, Natarajan; Jagadish, Bhumasamudram; Trouard, Theodore P et al. (2006) Redox-sensitive contrast agents for MRI based on reversible binding of thiols to serum albumin. Magn Reson Med 55:1272-80
Williams, Ryan; Baker, Amanda F; Ihle, Nathan T et al. (2006) The skin and hair as surrogate tissues for measuring the target effect of inhibitors of phosphoinositide-3-kinase signaling. Cancer Chemother Pharmacol 58:444-50

Showing the most recent 10 out of 26 publications