At our proposed U54 center, we will continue to conduct epigenomic analysis in cancer. While the focus of the previous award was on epigenetic processes associated with neoplastic transformation of normal cells. In this competing application, we will move a step forward to study epigenetic changes in prostate, breast, and ovarian cancer cells progressing to an aggressive phenotype, i.e., hormone-Zchemo-resistance. Based on our preliminary findings, we hypothesize that epigenetic deregulation of androgen receptor, estrogen receptor a, or TGF-B/SMAD4 signaling underlies the transition of a hormone-/chemo-sensitive to a hormone-/chemo-insensitive phenotype in cancer. Different modes of signaling-mediated transcription, including ligand-dependent and -independent functions, will be defined using integrated epigenomic data. We will develop probabilistic algorithms to predict the effect of chromosome looping and chromatin remodeling (i.e., changes of histone marks and DNA methylation) on target gene transcription, including empirical Bayesian mixture and hidden Markov modeling (for classifying spatiotemporal patterns of target genes in a signaling network), interactive modeling of transcription """"""""hubs"""""""", stochastic modeling of permissive and non-permissive epigenetic marks, and pattern recognition algorithms for predicting transcription factor binding sites and methylation-prone or -resistant sequences. Testing and validation of these computational predictions will be performed in cancer cell lines. Assays including functional knock-in or -out of key transcription hubs will determine whether cancer cells gain or lose hormone-/chemo-sensitivity, respectively, as a result of in vitro manipulation. For translational studies, primary tumors will be used to correlate clinicopathological correlations with epigenetic changes. By taking an integrative """"""""omics"""""""" approach, we expect to move the epigenomics field forward in at least three new directions: 1) long-range chromatin looping may be a common epigenetic mechanism of transcriptional regulation in cancer;2) histone modifications/DNA methylation of distant transcription binding sites represent previously uncharacterized biomarkers for predicting hormone-/chemo-resistance in cancer subtypes;and 3) computational modeling may support the recent notion that repressive histone modifications, rather than DNA methylation, are critical epigenetic factors in the heritable silencing of genes. Importantly, these state-of-the-art computational approaches and the vast omics data will be used for our education/outreach efforts to train young systems scientists and for collaborative studies with other researchers in the CCSB-ICBP network.

Public Health Relevance

Epigenetic assays will be used to determine whether differential histone modifications and DNA methylation occur in distant transcription factor binding sites and nearby promoter regions in hormone-/chemo-insensitive cells. These analyses will be extended to a panel of cancer cell lines and primary tumors. The final objective is to identify a panel of epigenetic biomarkers for predicting responsiveness to anti-hormone treatments and chemotherapies in cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA113001-10
Application #
8628064
Study Section
Special Emphasis Panel (ZCA1-SRLB-C (J1))
Program Officer
Gallahan, Daniel L
Project Start
2004-09-30
Project End
2015-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
10
Fiscal Year
2014
Total Cost
$1,363,847
Indirect Cost
$201,902
Name
University of Texas Health Science Center San Antonio
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Cui, Xiaodong; Zhang, Lin; Meng, Jia et al. (2018) MeTDiff: A Novel Differential RNA Methylation Analysis for MeRIP-Seq Data. IEEE/ACM Trans Comput Biol Bioinform 15:526-534
Martin, Elizabeth C; Conger, Adrienne K; Yan, Thomas J et al. (2017) MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Lett 591:382-392
Miller, David F B; Yan, Pearlly; Fang, Fang et al. (2017) Complete Transcriptome RNA-Seq. Methods Mol Biol 1513:141-162
Mitsuya, Kohzoh; Parker, Ashley N; Liu, Lu et al. (2017) Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PLoS One 12:e0186115
Cui, Xiaodong; Meng, Jia; Zhang, Shaowu et al. (2016) A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data. BMC Genomics 17 Suppl 7:520
Ye, Zhenqing; Chen, Zhong; Sunkel, Benjamin et al. (2016) Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1. Nucleic Acids Res 44:7540-54
Öze?, A R; Miller, D F; Öze?, O N et al. (2016) NF-?B-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene 35:5350-5361
Sunkel, Benjamin; Wu, Dayong; Chen, Zhong et al. (2016) Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence. Nucleic Acids Res 44:4105-22
Wang, Yao; Jadhav, Rohit Ramakant; Liu, Joseph et al. (2016) Roles of Distal and Genic Methylation in the Development of Prostate Tumorigenesis Revealed by Genome-wide DNA Methylation Analysis. Sci Rep 6:22051
Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin et al. (2016) Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers. Sci Rep 6:23035

Showing the most recent 10 out of 154 publications