CORE 2: Small Animal Research Core (SARC) Introduction The purpose of the small animal research core (SARC) will be to provide a functional interface between nanoparticle chemistry, tissue culture cell biology and Phase I clinical trial implementation of nanotechnology. The SARC will provide a menu of services tailored to investigator expertise in translational modeling. The SARC will be a source for information regarding mouse models of epithelial carcinogenesis in general, and models of angiogenesis in particular. As such, the SARC will be a liaison for relevant mouse models both within and beyond our local institution.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA119342-05
Application #
7930503
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
5
Fiscal Year
2009
Total Cost
$179,829
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Pan, Dipanjan; Kim, Benjamin; Hu, Grace et al. (2015) A strategy for combating melanoma with oncogenic c-Myc inhibitors and targeted nanotherapy. Nanomedicine (Lond) 10:241-51
Goette, Matthew J; Keupp, Jochen; Rahmer, Jürgen et al. (2015) Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 74:537-43
Schmieder, Anne H; Caruthers, Shelton D; Keupp, Jochen et al. (2015) Recent Advances in (19)Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions. Engineering (Beijing) 1:475-489
Schmieder, Anne H; Winter, Patrick M; Williams, Todd A et al. (2013) Molecular MR imaging of neovascular progression in the Vx2 tumor with ?v?3-targeted paramagnetic nanoparticles. Radiology 268:470-80
Pan, Hua; Myerson, Jacob W; Hu, Lingzhi et al. (2013) Programmable nanoparticle functionalization for in vivo targeting. FASEB J 27:255-64
Wu, Lina; Luderer, Micah; Yang, Xiaoxia et al. (2013) Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 3:677-86
Wu, Lina; Cai, Xin; Nelson, Kate et al. (2013) A Green Synthesis of Carbon Nanoparticle from Honey for Real-Time Photoacoustic Imaging. Nano Res 6:312-325
Hu, Lingzhi; Chen, Junjie; Yang, Xiaoxia et al. (2013) Rapid quantification of oxygen tension in blood flow with a fluorine nanoparticle reporter and a novel blood flow-enhanced-saturation-recovery sequence. Magn Reson Med 70:176-83
Hou, Kirk K; Pan, Hua; Lanza, Gregory M et al. (2013) Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials 34:3110-9
Hood, Joshua L; Jallouk, Andrew P; Campbell, Nancy et al. (2013) Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir Ther 18:95-103

Showing the most recent 10 out of 90 publications