The nanotechnologies that form the technology core of the NSBCC are enabling devices for both fundamental cancer research, and eventually for clinical care of cancer patients. However, they are similar to other 'high'nanotechnologies - they are not yet amenable to mass production. Many of the issues that must be solved require a mixture of fundamental science and engineering - problems that must be solved before commercialization of these technologies is likely to occur. The major impact of the NSBCC, and of the NCI's nanotechnology goals, will only be felt if the tools and technologies that are developed within the CCNE's are eventually made broadly available, and the NSBCC is in a terrific position to start planning for that right now. In this Project, we work out the fundamental science behind the mass production of nanosensors and we identify replication processes that, when fully developed, should enable mass productions.
Our aims also include the integration of those nanosensors with solvent and biofouling-resistant microfluidics, and the absolute quantitation of those sensors against our gold standard, which will be a panel of serum-proteins measured using a particular quantitative ICAT mass spectrometry technique. The goal of this project is to enable the wide-spread application of our nanotechnologies to cancer researchers and to the cancer clinicians.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA119347-05
Application #
7918206
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
5
Fiscal Year
2009
Total Cost
$172,241
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Bunck, David N; Atsavapranee, Beatriz; Museth, Anna K et al. (2018) Modulating the Folding Landscape of Superoxide Dismutase?1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 57:6212-6215
Poovathingal, Suresh Kumar; Kravchenko-Balasha, Nataly; Shin, Young Shik et al. (2016) Critical Points in Tumorigenesis: A Carcinogen-Initiated Phase Transition Analyzed via Single-Cell Proteomics. Small 12:1425-31
Masui, Kenta; Shibata, Noriyuki; Cavenee, Webster K et al. (2016) mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling. Bioessays 38:839-44
Masui, Kenta; Cavenee, Webster K; Mischel, Paul S (2016) Cancer metabolism as a central driving force of glioma pathogenesis. Brain Tumor Pathol 33:161-8
Das, Samir; Nag, Arundhati; Liang, JingXin et al. (2015) A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands. Angew Chem Int Ed Engl 54:13219-24
Zuckerman, Jonathan E; Gale, Aaron; Wu, Peiwen et al. (2015) siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid Ther 25:53-64
Masui, Kenta; Cavenee, Webster K; Mischel, Paul S (2015) mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment. Brain Pathol 25:755-9
Deyle, Kaycie M; Farrow, Blake; Qiao Hee, Ying et al. (2015) A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1. Nat Chem 7:455-62
Hu-Lieskovan, Siwen; Homet Moreno, Blanca; Ribas, Antoni (2015) Excluding T Cells: Is ?-Catenin the Full Story? Cancer Cell 27:749-50
Heath, James R (2015) Nanotechnologies for biomedical science and translational medicine. Proc Natl Acad Sci U S A 112:14436-43

Showing the most recent 10 out of 135 publications