The goal of this research proposal is to discover modular control structures (genetic modules), within pathways that coordinate the germinal center (GC) reaction in B cells, and to elucidate their disregulation in GC-derived tumors. The GC reaction of antigen-activated B-lymphocytes is the key biological process for the selection of B cells producing antibodies with high affinity for antigens. As such, the GC represents a key structure for the development of physiologic antibody-mediated immune responses. Furthermore, GC B-cells are involved in the pathogenesis of B cell related cancers, which include a heterogeneous group of malignancies, representing together the 5th most common class of tumors in humans. We have assembled a large collection (>300) of gene expression profile data from different B cell populations including: 1) normal cells representing the main stages of GC development; 2) panels of tumors representing the main subtypes of GC-derived malignancies; and 3) B cell lines experimentally manipulated in vitro to reflect single-gene alterations found in human tumors. Using this data set in combination with new reverse-engineering and gene clustering algorithms developed by the MAGNet Center investigators, we will discover the genetic modules that orchestrate the GC reaction, especially those differentially expressed in normal vs. tumor B cells. In particular, we propose to investigate the sub-networks that involve two proto-oncogenes: BCL6 (a gene playing an important role in the coordination of the genetic programs leading to the GC reaction) and c-MYC (a gene coexpressed with BCL6 only in tumors).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA121852-04
Application #
7676859
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
4
Fiscal Year
2008
Total Cost
$281,502
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong et al. (2018) Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 10:
Azad, Robert N; Zafiropoulos, Dana; Ober, Douglas et al. (2018) Experimental maps of DNA structure at nucleotide resolution distinguish intrinsic from protein-induced DNA deformations. Nucleic Acids Res 46:2636-2647
Abe, Takayuki; Lee, Albert; Sitharam, Ramaswami et al. (2017) Germ-Cell-Specific Inflammasome Component NLRP14 Negatively Regulates Cytosolic Nucleic Acid Sensing to Promote Fertilization. Immunity 46:621-634
Bisikirska, Brygida; Bansal, Mukesh; Shen, Yao et al. (2016) Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression. Cancer Res 76:664-74
Del Giudice, Ilaria; Marinelli, Marilisa; Wang, Jiguang et al. (2016) Inter- and intra-patient clonal and subclonal heterogeneity of chronic lymphocytic leukaemia: evidences from circulating and lymph nodal compartments. Br J Haematol 172:371-383
Wang, Donglai; Kon, Ning; Lasso, Gorka et al. (2016) Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature 538:118-122
Hosios, Aaron M; Hecht, Vivian C; Danai, Laura V et al. (2016) Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Dev Cell 36:540-9
Stockman, Victoria B; Ghamsari, Lila; Lasso, Gorka et al. (2016) A High-Throughput Strategy for Dissecting Mammalian Genetic Interactions. PLoS One 11:e0167617
Alvarez, Mariano J; Shen, Yao; Giorgi, Federico M et al. (2016) Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 48:838-47
Sheng, Ren; Jung, Da-Jung; Silkov, Antonina et al. (2016) Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. J Biol Chem 291:17639-50

Showing the most recent 10 out of 258 publications