This overall goal of our Proposed Center is to use a physics-based approach towards understanding the evolution of cancer resistance. From an experimental point of view, this will be accomplished using the """"""""microhabitat patch"""""""" (MHP) technology developed on a microfluidic chip platform at Princeton. This, experimental technique is central to all aspects of our proposal as it allows us to experimentally """"""""tune"""""""" parameters which affect cell migration and evolution and then watch the evolution of interacting populations of cells as they move and evolve in space and time. The main focus of this proposed section of our Center is to rapidly extend this technology to mammalian cells (from initial studies in bacteria), and to develop additional capabilities for such MHP's for studying how cancer cells respond to stress. These include 2-dimensional or 3-dimenstional arrays in addition to 1-dimension, the ability to tune the coupling parameters between MHP's and between MHP's and food supplies as a function of time, and to adjust the local temperature as a function of time. We will also develop approaches for extracting cells from chips after evolution experiments for off-chip genomic analysis, and eventually methods for on-chip genomic analysis. Once these technologies and capabilities are invented and developed, they will be transferred to the Princeton Microfluidic Shared Resource (Section N4) so that all Center members (cancer biologists, e.g.) and external researchers such as those on pilot or transnetwork projects can use the new capabilities.

Public Health Relevance

The main focus of this proposed section of our Center is to rapidly extend this technology to mammalian cells (from initial studies in bacteria), and to develop additional capabilities for such MHP's for studying how cancer cells respond to stress.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143803-05
Application #
8535646
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$199,351
Indirect Cost
Name
Princeton University
Department
Type
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Chalfin, Heather J; Kates, Max; van der Toom, Emma E et al. (2018) Characterization of Urothelial Cancer Circulating Tumor Cells with a Novel Selection-Free Method. Urology 115:82-86
de Groot, Amber E; Pienta, Kenneth J (2018) Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget 9:20908-20927
Wu, Amy; Liao, David; Kirilin, Vlamimir et al. (2018) Cancer dormancy and criticality from a game theory perspective. Cancer Converg 2:1
van der Toom, Emma E; Axelrod, Haley D; de la Rosette, Jean J et al. (2018) Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol :
Valkenburg, Kenneth C; de Groot, Amber E; Pienta, Kenneth J (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15:366-381
Chalfin, Heather J; Glavaris, Stephanie A; Malihi, Paymaneh D et al. (2018) Prostate Cancer Disseminated Tumor Cells are Rarely Detected in the Bone Marrow of Patients with Localized Disease Undergoing Radical Prostatectomy across Multiple Rare Cell Detection Platforms. J Urol 199:1494-1501
Maley, Carlo C; Aktipis, Athena; Graham, Trevor A et al. (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17:605-619
Piotrowski-Daspit, Alexandra S; Simi, Allison K; Pang, Mei-Fong et al. (2017) A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells. Methods Mol Biol 1501:245-257
Parsana, Princy; Amend, Sarah R; Hernandez, James et al. (2017) Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration. BMC Cancer 17:447
Decker, A M; Cackowski, F C; Jung, Y et al. (2017) Biochemical Changes in the Niche Following Tumor Cell Invasion. J Cell Biochem 118:1956-1964

Showing the most recent 10 out of 105 publications