This project will characterize the cancer cell lines and tissues common to the Center using newly developed single-molecule tools, together with new methods for chromatin fractionation based on physical properties of mononucleosomes and arrays, to probe chromatin and epigenetic changes in cancer. Recent advances in the understanding of chromatin dynamics in model systems leads us to propose a novel mechanism for chromatin changes in human cancer. It is widely accepted that silencing of tumor suppressor genes is a key step in cancer initiation, and maintenance of tumor suppressor gene silencing often underlies cancer progression. Among the epigenetic mechanisms that are responsible for maintaining this silencing, promoter DNA methylation has strong experimental support. However, the popular hypothesis that DNA methylation silences genes by binding methylcytosine DNA binding proteins and consequent recruitment of his tone modifiers remains to be demonstrated, despite the fact that it has been the dogma for over a decade. We propose that gene silencing instead occurs because DNA methylation and other epigenetic modifications interfere with incorporation or properties ofthe universal his tone variant, H2A.Z. Our work and that of others suggests that H2A.Z destabilizes nucleosomes at promoters and thus favors promoter activation, so that by preventing H2A.Z incorporation or destabilization activity, unscheduled DNA methylation of tumor suppressor gene promoters prevents gene activation. We will test this hypothesis by investigating the genome-wide changes in H2A.Z and assay the physical properties and post-translational modifications of H2A.Z-containing nucleosomes from cancer cells provided by the Materials Core Facility. Our project will apply atomic force microscopy (AFM) and recognition imaging technologies that we have recently used to characterized single native chromatin particles containing the CenHS his tone variant in an ongoing ASU-Hutch collaboration. By following changes in DNA methylation, H2A.Z, and selected post-translational modifications in esophageal and colon cancer cells and tissue samples using both genome-wide and single-molecule methods, we will test our hypothesis, probe epigenetic changes, and correlate these changes with the physical properties measured by the two other projects in the Center.

Public Health Relevance

Whereas genetic changes are essentially irreversible, epigenetic changes, including changes in DNA methylation, his tone modification and variants, are potentially reversible. Therefore, understanding the epigenetic mechanisms responsible for silencing of tumor suppressor genes promises to revolutionize diagnosis, treatment and prevention.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143862-05
Application #
8744860
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Project Start
2013-09-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$198,331
Indirect Cost
$51,005
Name
Arizona State University-Tempe Campus
Department
Type
DUNS #
943360412
City
Tempe
State
AZ
Country
United States
Zip Code
85287
Yu, Ming; Heinzerling, Tai J; Grady, William M (2018) DNA Methylation Analysis Using Droplet Digital PCR. Methods Mol Biol 1768:363-383
Morris, Shelli M; Davison, Jerry; Carter, Kelly T et al. (2017) Transposon mutagenesis identifies candidate genes that cooperate with loss of transforming growth factor-beta signaling in mouse intestinal neoplasms. Int J Cancer 140:853-863
Yuan, Zixu; Baker, Kelsey; Redman, Mary W et al. (2017) Dynamic plasma microRNAs are biomarkers for prognosis and early detection of recurrence in colorectal cancer. Br J Cancer 117:1202-1210
Senapati, Subhadip; Lindsay, Stuart (2016) Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy. Acc Chem Res 49:503-10
Bosch, Linda J W; Luo, Yanxin; Lao, Victoria V et al. (2016) WRN Promoter CpG Island Hypermethylation Does Not Predict More Favorable Outcomes for Patients with Metastatic Colorectal Cancer Treated with Irinotecan-Based Therapy. Clin Cancer Res 22:4612-22
Al Mamun, Mohammed; Albergante, Luca; Moreno, Alberto et al. (2016) Inevitability and containment of replication errors for eukaryotic genome lengths spanning megabase to gigabase. Proc Natl Acad Sci U S A 113:E5765-74
Staunton, Jack R; Doss, Bryant L; Lindsay, Stuart et al. (2016) Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci Rep 6:19686
Cohen, Stacey A; Wu, Chen; Yu, Ming et al. (2016) Evaluation of CpG Island Methylator Phenotype as a Biomarker in Colorectal Cancer Treated With Adjuvant Oxaliplatin. Clin Colorectal Cancer 15:164-9
Navaei, Ali; Saini, Harpinder; Christenson, Wayne et al. (2016) Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater 41:133-46
Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L et al. (2016) Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells. Sci Rep 6:30593

Showing the most recent 10 out of 54 publications