Our Center's Outreach and Dissemination Unit will provide critical links to the external research community, with special emphasis on researchers in physical sciences and cancer biology. Knowledge, inventions and new capabilities created by our research will be made accessible throughout the Center and applications will be actively promoted in the broader research community and the public and private sectors for the benefit of society. Program elements designed to meet these goals will include: Website;Annual symposium;Seminar series;Research project meetings;Visiting scientist program;Training and workshops.

Public Health Relevance

This PS-OC brings together expert teams from the fields of physics, nano and microfabrication, engineering and cancer biology to develop novel trans-disciplinary approaches to better understand the complexity of cancer metastasis, the aspect of cancer that directly leads to patient morbidity and mortality. Approaches developed by physical scientists will be focused on the study of cancer. Our studies aim to identify novel mechanisms used by cancer cells, but not normal cells, for growth and metastasis to distant body sites. These new mechanism provide novel drug targets, that aim towards arresting cancer metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143876-03
Application #
8309483
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
3
Fiscal Year
2011
Total Cost
$85,208
Indirect Cost
Name
Cornell University
Department
Type
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Ariza-Nieto, Magnolia; Alley, Joshua B; Samy, Sanjay et al. (2018) Circulating miR-148a associates with sensitivity to adiponectin levels in human metabolic surgery for weight loss. Endocr Connect :
Song, Young Hye; Warncke, Christine; Choi, Sung Jin et al. (2017) Breast cancer-derived extracellular vesicles stimulate myofibroblast differentiation and pro-angiogenic behavior of adipose stem cells. Matrix Biol 60-61:190-205
Carey, Shawn P; Martin, Karen E; Reinhart-King, Cynthia A (2017) Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci Rep 7:42088
Huang, Yu Ling; Segall, Jeffrey E; Wu, Mingming (2017) Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. Lab Chip 17:3221-3233
Li, Jiahe; Ai, Yiwei; Wang, Lihua et al. (2016) Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 76:52-65
Denais, Celine M; Gilbert, Rachel M; Isermann, Philipp et al. (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353-8
Chandrasekaran, Siddarth; Chan, Maxine F; Li, Jiahe et al. (2016) Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials 77:66-76
Lannin, Timothy B; Thege, Fredrik I; Kirby, Brian J (2016) Comparison and optimization of machine learning methods for automated classification of circulating tumor cells. Cytometry A 89:922-931
Fedorchak, Gregory; Lammerding, Jan (2016) Cell Microharpooning to Study Nucleo-Cytoskeletal Coupling. Methods Mol Biol 1411:241-54
Rahman, Aniqua; Carey, Shawn P; Kraning-Rush, Casey M et al. (2016) Vinculin Regulates Directionality and Cell Polarity in 2D, 3D Matrix and 3D Microtrack Migration. Mol Biol Cell :

Showing the most recent 10 out of 197 publications