PROJECT 4/GAMBHIR PI: Gambhlr, Sanjiv S N3.4.1. Project Summary. Our long-term goals are to clinically translate nanodiagnostics {in vitro and in vivo) for the improved management of cancer patients. Our primary focus for this competing GONE renewal is on developing and using nanotechnology for earlier cancer detection/intervention, and for monitoring response to anti-neoplastic therapy. In the current proposal we focus on both ovarian and non-small cell lung cancers but expect that our strategies will eventually apply to many other cancers. We have made significant progress over the last cycle of this CCNE competing renewal grant including the development of Raman and photoacoustic molecular imaging strategies. In the last year we have also pursued translation of gold based Raman nanoparticles with endoscopic imaging for earlier colorectal cancer detection in patients. Both in vitro nanosensors and in vivo nano-molecular imaging will be utilized to accomplish our long-term goals. The combination of both in vitro and in vivo diagnostic strategies is expected to lead to a much greater accuracy and cost-effectiveness than either strategy alone. To translate our in vitro and in vivo diagnostic strategies we will utilize mouse models of human cancer that help us to test our approaches prior to clinical translation. The clinical translation will be accomplished through the help ofthe clinical translation core (Core 3) which links to various clinical trials and leverages on other funding mechanisms already in place in our CCNE.
Two aims focused on ovarian and non-small cell lung cancer diagnostics will be pursued to accomplish our goals and are detailed next (Fig. N3.4.1).

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Vermesh, Ophir; Aalipour, Amin; Ge, T Jessie et al. (2018) An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo. Nat Biomed Eng 2:696-705
Li, Jingchao; Rao, Jianghong; Pu, Kanyi (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217-235
Pohling, Christoph; Campbell, Jos L; Larson, Timothy A et al. (2018) Smart-Dust-Nanorice for Enhancement of Endogenous Raman Signal, Contrast in Photoacoustic Imaging, and T2-Shortening in Magnetic Resonance Imaging. Small 14:e1703683
Shah, Preyas N; Lin, Tiras Y; Aanei, Ioana L et al. (2018) Extravasation of Brownian Spheroidal Nanoparticles through Vascular Pores. Biophys J 115:1103-1115
Song, Guosheng; Chen, Min; Zhang, Yanrong et al. (2018) Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. Nano Lett 18:182-189
Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius et al. (2018) Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors. Theranostics 8:1389-1398
Si, Peng; Sen, Debasish; Dutta, Rebecca et al. (2017) In Vivo Molecular Optical Coherence Tomography of Lymphatic Vessel Endothelial Hyaluronan Receptors. Sci Rep 7:1086
Ooi, Chin Chun; Park, Seung-Min; Wong, Dawson J et al. (2017) Capture and Genetic Analysis of Circulating Tumor Cells Using a Magnetic Separation Device (Magnetic Sifter). Methods Mol Biol 1634:153-162
Feng, Yi; Zhu, Shoujun; Antaris, Alexander L et al. (2017) Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 8:3703-3711
A?ao?ullar?, Duygu; Madsen, Steven J; Ögüt, Burcu et al. (2017) Synthesis and Characterization of Graphite-Encapsulated Iron Nanoparticles from Ball Milling-Assisted Low-Pressure Chemical Vapor Deposition. Carbon N Y 124:170-179

Showing the most recent 10 out of 143 publications