; Project 5: Stationary Breast Tomosynthesis Breast cancer is the second most common cancer type among women. Over 10% of women develop breast cancer during their lifetimes and 30% to 40% of these patients die from the disease, Eariy detecfion is viewed as the best hope to decrease mortality. Full-field digital mammography (FFDM) is the current gold standard for eariy detecfion but has it limitations. Digital breast tomosynthesis (DBT), a 3-D imaging technique. Is generally considered to be the next generation screening device with the potenfial for improved performance compared to FFDM. In the U.S., DBT scanners from 3 leading commercial vendors are in advanced stages of clinical trials. Recent clinical studies have shown that DBT, while having better detection capability for masses compared to FFDM, suffers from lower sensitivity for micro-calcifications (MC) which is critical for eariy cancer identification. The low MC detectability is attributed mainly to the low image resolufion due to mofion blurring of both the patient and the x-ray source during the relatively long scanning fime. The goal of this project is to develop a novel stationary DBT (s-DBT) technology that has the potential to improve our capability for eariy detection of human breast tumors. The key enabling technology is the carbon nanotube (CNT) based multi-beam field emission x-ray (MBFEX) that was pioneered by our team. During the first CCNE program, we proposed the s-DBT concept and demonstrated the possibility of construcfing a s-DBT scanner with significantly increased scanning speed and spafial resolufion compared to the current DBT technology. Our hypothesis is that the high spatial resolution will improve the sensitivity for both masses and micro-calcifications. In addition, the fast scanning speed will reduce patient discomfort due to prolonged compression. For this project we will develop a clinical-test ready prototype s-DBT system and validate its performance through phantom measurements and reader studies. The research will be carried out in close collaboration with Hologic, a market leader in women's healthcare and one ofthe major developers of the DBT technology.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Sun, Junjiang; Shao, Wenwei; Chen, Xiaojing et al. (2018) An Observational Study from Long-Term AAV Re-administration in Two Hemophilia Dogs. Mol Ther Methods Clin Dev 10:257-267
Liu, Lina; Wang, Yuhua; Miao, Lei et al. (2018) Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol Ther 26:45-55
Starling, Brittney R; Kumar, Parag; Lucas, Andrew T et al. (2018) Mononuclear phagocyte system function and nanoparticle pharmacology in obese and normal weight ovarian and endometrial cancer patients. Cancer Chemother Pharmacol :
Chai, Zheng; Zhang, Xintao; Rigsbee, Kelly Michelle et al. (2018) Cryoprecipitate augments the global transduction of the adeno-associated virus serotype 9 after a systemic administration. J Control Release 286:415-424
Wang, Yuhua; Zhang, Lu; Xu, Zhenghong et al. (2018) mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol Ther 26:420-434
Pei, Xiaolei; He, Ting; Hall, Nikita E et al. (2018) AAV8 virions hijack serum proteins to increase hepatocyte binding for transduction enhancement. Virology 518:95-102
Zhang, Xintao; He, Ting; Chai, Zheng et al. (2018) Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials 176:71-83
Lucas, Andrew T; White, Taylor F; Deal, Allison M et al. (2017) Profiling the relationship between tumor-associated macrophages and pharmacokinetics of liposomal agents in preclinical murine models. Nanomedicine 13:471-482
Kim, Junghyun; Luo, Zhi-Xiang; Wu, Yue et al. (2017) In-Situ Formation of Holmium Oxide in Pores of Mesoporous Carbon Nanoparticles as Substrates for Neutron-Activatable Radiotherapeutics. Carbon N Y 117:92-99
Huo, Meirong; Zhao, Yan; Satterlee, Andrew Benson et al. (2017) Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release 245:81-94

Showing the most recent 10 out of 190 publications