The most studied epigenetic abnormality in cancer is gene silencing associated with DNA hypermethylation. Recent studies demonstrate that gene inactivation by promoter hypermethylation can occur at early stages of cancer progression, perhaps even before mutations can be detected. Using DNA methylation as a cancer biomarker shows great promise for early diagnosis, assessments in high risk individuals, and post-therapy monitoring. While a noninvasive test with bodily fluids to detect cancer is seen as a holy grail by clinicians, the ability to detect specific DNA methylation changes in bodily fluids, including blood, sputum or stool represents a greater challenge, due to the small amounts of DNA available in these samples and the limited tumor content of such samples. Therefore, a clinically useful technology that allows for detection of DNA methylation in bodily fluids will have a substantial impact in both cancer diagnosis and management. We propose to develop a new methylation detection platform which integrates improved methods for each of the critical processes involved: DNA isolation, bisulfite treatment, and detection of methylation. All steps will ultimately be integrated and performed on a microfiuidic chip, utilizing superparamagnetic particles as a common carrier for fluidic and molecular manipulations and the quantum dots-mediated fluorescence resonance energy transfer technology (QD-FRET) for biosensing. This approach will facilitate highly efficient sample preparation and sensitive detection of DNA methylation in bodily fluids. In addition, the proposed technology can perform integrated and automatic analysis, minimizing manual labor and time while providing more reproducible results and being useful for a large scale screening. The potential use in pre-cUnical applications will be determined by testing bodily samples from patients with early stage cancers and controls, including serum/plasma, sputum and stool. In addition, the detection of cancer specific methylation in the blood/plasma will be used to monitor therapeutic response in Projects 2, 3 and 4, facihtating development prior to examination of cancer patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Russell, Luisa M; Hultz, Margot; Searson, Peter C (2018) Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action. J Control Release 269:171-176
Woodard, Lauren E; Dennis, Cindi L; Borchers, Julie A et al. (2018) Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Sci Rep 8:12706
Pisanic 2nd, Thomas R; Athamanolap, Pornpat; Wang, Tza-Huei (2017) Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin Cell Dev Biol 64:5-17
Liu, Guanshu; Ray Banerjee, Sangeeta; Yang, Xing et al. (2017) A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nat Biomed Eng 1:977-982
Huang, Xinglu; Chisholm, Jane; Zhuang, Jie et al. (2017) Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci U S A 114:E6595-E6602
Dawidczyk, Charlene M; Russell, Luisa M; Hultz, Margot et al. (2017) Tumor accumulation of liposomal doxorubicin in three murine models: Optimizing delivery efficiency. Nanomedicine 13:1637-1644
Wu, Juan; Qu, Wei; Williford, John-Michael et al. (2017) Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles. Nanotechnology 28:204002
Schneider, Craig S; Xu, Qingguo; Boylan, Nicholas J et al. (2017) Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv 3:e1601556
Banerjee, Sangeeta R; Foss, Catherine A; Horhota, Allen et al. (2017) 111In- and IRDye800CW-Labeled PLA-PEG Nanoparticle for Imaging Prostate-Specific Membrane Antigen-Expressing Tissues. Biomacromolecules 18:201-209
Shin, Soo Hyun; Kadayakkara, Deepak K; Bulte, Jeff W M (2017) In Vivo (19)F MR Imaging Cell Tracking of Inflammatory Macrophages and Site-specific Development of Colitis-associated Dysplasia. Radiology 282:194-201

Showing the most recent 10 out of 123 publications