A major parameter limiting immune responses to vaccination is the number of activated antigen presenting cells (APCs) that capture antigen from the vaccine site and migrate to draining lymph nodes (LNs), the site where T and B cell priming occurs. Currently, a quantitative non-invasive technique for monitoring in vivo antigen capture and dehvery is laclting. The use of cellular magnetic resonance imaging (MRI) is a promising approach for this purpose;however, cellular imaging currently requires ex vivo pre-labeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Using mouse models, we have developed an in vivo labehng method which relies upon the capture of vaccine antigen-associated superparamagnetic iron oxide (SPIO) by endogenous antigen presenting cells, in situ, in order to quantify AFC delivery to LNs. In this system, MRI is capable of monitoring the trafficking of magnetically labeled APCs in vivo that are responsible for inducing tumor-specific immune responses. Analysis of lymph node MR images using dedicated software enables signal quantification through the generation of pixel intensity histograms. Excellent correlation is observed between in vivo and ex vivo quantification of vaccine antigen-loaded APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. Furthermore, APCs that capture SPIO (and antigen) and traffic to LN can subsequently be magnetically recovered ex vivo, allowing for detailed cellular and molecular studies of the upstream parameters that influence the afferent arm of vaccine-induced immunity. Using murine vaccine models targeting lung cancer, we now propose to examine the correlation between the extent of APC trafficking as measured by MRI and the quantity and quality of the downstream immune response. This information will be used to evaluate candidate vaccine adjuvants for their ability to augment this critical step In generating systemic immunity. We will also extend this technology to additional vaccine platforms setting the stage for clinical application.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151838-05
Application #
8734337
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$184,189
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Russell, Luisa M; Hultz, Margot; Searson, Peter C (2018) Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action. J Control Release 269:171-176
Woodard, Lauren E; Dennis, Cindi L; Borchers, Julie A et al. (2018) Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Sci Rep 8:12706
Pisanic 2nd, Thomas R; Athamanolap, Pornpat; Wang, Tza-Huei (2017) Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin Cell Dev Biol 64:5-17
Liu, Guanshu; Ray Banerjee, Sangeeta; Yang, Xing et al. (2017) A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nat Biomed Eng 1:977-982
Huang, Xinglu; Chisholm, Jane; Zhuang, Jie et al. (2017) Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci U S A 114:E6595-E6602
Dawidczyk, Charlene M; Russell, Luisa M; Hultz, Margot et al. (2017) Tumor accumulation of liposomal doxorubicin in three murine models: Optimizing delivery efficiency. Nanomedicine 13:1637-1644
Wu, Juan; Qu, Wei; Williford, John-Michael et al. (2017) Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles. Nanotechnology 28:204002
Schneider, Craig S; Xu, Qingguo; Boylan, Nicholas J et al. (2017) Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv 3:e1601556
Banerjee, Sangeeta R; Foss, Catherine A; Horhota, Allen et al. (2017) 111In- and IRDye800CW-Labeled PLA-PEG Nanoparticle for Imaging Prostate-Specific Membrane Antigen-Expressing Tissues. Biomacromolecules 18:201-209
Shin, Soo Hyun; Kadayakkara, Deepak K; Bulte, Jeff W M (2017) In Vivo (19)F MR Imaging Cell Tracking of Inflammatory Macrophages and Site-specific Development of Colitis-associated Dysplasia. Radiology 282:194-201

Showing the most recent 10 out of 123 publications