The proposed Center is designed to provide rapid translation of our bench studies of a broad set of nanomedicines for cancer with in-depth physico-chemical, in vivo disposition and imaging studies into a real industrial product by developing the appropriate technologies and scaling them up for manufacture of test batches of candidates for preclinical and clinical evaluation under GMP/GLP conditions. We will establish a Center for Cancer Nanotechnology Excellence (CCNE) at Northeastern University (NU), Boston with collaborations at Beth Israel Deaconess Hospital;Harvard Medical School;Rutgers, The State University of New Jersey, Auburn University, and Nemucore Medical Innovations, Inc. The proposed CCNE will collaborate with the NIH-designated Cancer Institute of New Jersey and SPORE. The CCNE will utilize the support and facilities of the NU-based Center for High-rate Nanomanufacturing (NSF-funded Nanoscale Science and Engineering Center). Cross-disciplinary collaboration will enable integration of the fundamental biological knowledge base with physical science and engineering approaches for intimate involvement in scale-up and manufacture to rapidly translate bench research into animal testing and GMP production and to narrow the gap between discovery and development of anticancer therapeutics. The CCNE will concentrate on multifunctional, targeted devices that will bypass current biological barriers to delivery of multiple therapeutic agents at high local concentrations, with appropriate timing, directly to cancer cells. The main objective of the Center will be to develop, test pre-clinically in vitro and in vivo, characterize, scale up and manufacture under GMP conditions test batches of the most promising nanopreparations for cancer. Nanocarriers will include polymeric micelles, liposomes, polymeric particles, and dendrimers, while the drugs to be used will include pro-apoptotic agents, DNA, and siRNA together with diagnostic labels. The proposed CCNE will: a) create and supply appropriate """"""""starting materials"""""""";b) establish proof-of-concept through in vitro studies;c) conduct pharmacologic studies with animal models;d) perform a variety of in vivo model studies;e) provide quality assurance;and f) develop production schemes for a broad set of nanopreparations for cancer treatment and diagnosis. Public Health Relevance: We expect this model program will avoid the problems associated with piece-meal basic research, development efforts by many independent investigations. The Center is organized for the rapid scale-up and development, under GMP/GLP conditions, of the drugs shown in the lab to be effective anti-tumor agents. The Center will provide the quality and quantity of drug candidates necessary for prompt, meaningful clinical trials.
Showing the most recent 10 out of 86 publications