Project Title: Combination Nanotherapeutic Strategies to Overcome Tumor Drug Resistance The success of chemotherapeutic treatment of primary ovarian cancer and especially metastatic cells growing in ascitic fluid is limited by the intrinsic and acquired resistance of cancer cells and adverse side effects of chemotherapy. Based on the results of our previous study and literature data, we hypothesize, that the effective treatment of multidrug resistant ovarian tumors is possible only by the simultaneous suppression of cellular resistance and cell death induction by several anticancer agents with different mechanisms of action. Such goals can be achieved if several anticancer agents are simultaneously delivered in one multifunctional system in combination with other active ingredients that perform different specific functions for enhancing cellular uptake and efficiency of the main drug specifically in cancer cells, limiting adverse side effects and preventing the development and/or suppression of the existent drug resistance. In the proposed study, we plan to apply nanotechnology approaches to the development and evaluation of such multifunctional nanotherapeutics. The long-term objective of the proposed research is to verify the hypothesis and develop novel multifunctional Nanocarrier-based Drug Delivery System(s) (NDDS) that will significantly increase the efficacy of the chemotherapy of primary ovarian cancer and intraperitoneal metastases while minimizing side effects in healthy organs. A novel internally quaternized and surfaceacetylated poly(amidoamine) dendrimer (QPAMAM-NHAc) will be used as a nanocarrier for NDDS. The NDDS will contain a tumor-specific targeting moiety, two anticancer drugs, and suppressors of pump and nonpump cellular resistance. Paclitaxel, cisplatin/carboplatin and their combination will be evaluated as anticancer drugs - cell death inducers. siRNA targeted to MDR1 and CD44 mRNA will be investigated as suppressors of pump resistance. siRNA targeted to BCL2 mRNA will be studied as a suppressor of nonpump resistance. Established human multidrug resistant ovarian cancer cell lines as well as cells isolated from primary tumor and malignant ascites from patients with advanced multidrug resistant ovarian carcinoma will be used to create ectopic subcutaneous and orthotopic intraperitoneal models in nude mice. Intravenous systemic and intraperitoneal local treatments of experimental cancers will be compared. The results of the proposed work will be used to design novel multifunctional nanotechnology approaches for the treatment of different cancers.

Public Health Relevance

The objective of the proposed research is to develop novel multifunctional nanocarrier-based drug delivery system that will significantly increase the efficacy of the chemotherapy of primary ovarian cancer and intraperitoneal metastases while minimizing side effects in healthy organs. We are proposing a novel nanotechnology approach for the effective treatment of ovarian cancer by simultaneous suppression of cellular resistance and cell death induction by several anticancer agents with different mechanisms of action.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151881-05
Application #
8710073
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$254,447
Indirect Cost
Name
Northeastern University
Department
Type
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Kumar, Gaurav; Goldberg, S Nahum; Gourevitch, Svetlana et al. (2018) Targeting STAT3 to Suppress Systemic Pro-Oncogenic Effects from Hepatic Radiofrequency Ablation. Radiology 286:524-536
Upponi, Jaydev R; Jerajani, Kaushal; Nagesha, Dattatri K et al. (2018) Polymeric micelles: Theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 170:26-36
Jhaveri, Aditi; Deshpande, Pranali; Pattni, Bhushan et al. (2018) Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release 277:89-101
Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan et al. (2018) Phage-derived protein-mediated targeted chemotherapy of pancreatic cancer. J Drug Target 26:505-515
Petrenko, Valery A; Gillespie, James W (2017) Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'. Expert Opin Drug Deliv 14:373-384
van de Ven, Anne L; Tangutoori, Shifalika; Baldwin, Paige et al. (2017) Nanoformulation of Olaparib Amplifies PARP Inhibition and Sensitizes PTEN/TP53-Deficient Prostate Cancer to Radiation. Mol Cancer Ther 16:1279-1289
Pattni, Bhushan S; Jhaveri, Aditi; Dutta, Ivy et al. (2017) Targeting energy metabolism of cancer cells: Combined administration of NCL-240 and 2-DG. Int J Pharm 532:149-156
Patel, Niravkumar R; Piroyan, Aleksandr; Nack, Abbegial H et al. (2016) Design, Synthesis, and Characterization of Folate-Targeted Platinum-Loaded Theranostic Nanoemulsions for Therapy and Imaging of Ovarian Cancer. Mol Pharm 13:1996-2009
Moussa, Marwan; Goldberg, S Nahum; Kumar, Gaurav et al. (2016) Effect of thermal dose on heat shock protein expression after radio-frequency ablation with and without adjuvant nanoparticle chemotherapies. Int J Hyperthermia 32:829-841
Han, Lei; Liu, Pei; Petrenko, Valery A et al. (2016) A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Sci Rep 6:22199

Showing the most recent 10 out of 86 publications