Rationale: Melanoma is an aggressive disease for which there has not been an effective curative treatment until recently. The treatment of advanced melanoma has historically lagged behind that of other cancers due to the limited impact of conventional chemotherapy and the aibllity of immunotherapy to modulate the clinical course of a small percentage of patients. An increasing understanding of the somatic genetic alterations that give rise to melanoma has spawned hope that oncogene, directed therapy might prove valuable in the management of this aggressive disease. The discovery of activating BRAF mutations in 2002'*'^'provided the first tractable target for a potent and selective pharmacologic inhibitor. However, the field was stalled for years by the lack of such agents for use in clinical trials, with the first generation BRAF inhibitor, sorafenib, failing to demonstrate efficacy'^. The first generation of highly selective BRAF inhibitors, PLX4032 and GSK2118436, have now completed phase 1 and phase 2 testing and have demonstrated unprecedented short-term efficacy among patients with metastatic melanoma harboring a BRAF mutation'""""""""^. 60 to 70% of patients achieve objective responses early in the course of therapy, and approximately 90% of all patients realize some degree of tumor regression. However, evidence that single agent therapy will not produce long lasting clinical benefit in the setting of advanced disease has also manifested with the median duration of response being nine months for those who achieve an objective response early on. and the overall median progression free survival being 6 to 7 months for all patients treated. Only a small subpopulation (fewer than 10%) achieves complete responses or has responses that last for 18 months or longer. While the early efficacy results associated with either of the BRAF inhibitors compares very favorably to any other available therapy for advanced melanoma, and regulatory approval for these agents is anticipated in the near future, there is clearly a need for research into the mechanisms of resistance so that rational combination regimens can be constructed in the future. In summary, despite the game-changing results in the clinics by the selective BRAF inhibitor, resistance has become the central question in the field: what are the mechanisms driving de novo and acquired resistance? Can combination strategies be developed to minimize its emergence? Are only autonomous tumor-cell mechanisms at play or does the tumor microenvironment in BRAF mutant melanoma promote paths of """"""""lesser"""""""" resistance to escaping the inhibitor^ effect of selective BRAF inhibitor

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA163125-04
Application #
8744889
Study Section
Special Emphasis Panel (ZCA1-SRLB-3)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
$254,210
Indirect Cost
$38,170
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Roh, Whijae; Chen, Pei-Ling; Reuben, Alexandre et al. (2017) Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9:
Reuben, Alexandre; Spencer, Christine N; Prieto, Peter A et al. (2017) Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom Med 2:
Young, Helen L; Rowling, Emily J; Bugatti, Mattia et al. (2017) An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. J Exp Med 214:1691-1710
Friedman, Adam A; Xia, Yun; Trippa, Lorenzo et al. (2017) Feasibility of Ultra-High-Throughput Functional Screening of Melanoma Biopsies for Discovery of Novel Cancer Drug Combinations. Clin Cancer Res 23:4680-4692
Juneja, Vikram R; McGuire, Kathleen A; Manguso, Robert T et al. (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214:895-904
Smith, Michael P; Rowling, Emily J; Miskolczi, Zsofia et al. (2017) Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Mol Med 9:1011-1029
Kwong, Lawrence N; Zou, Lihua; Chagani, Sharmeen et al. (2017) Modeling Genomic Instability and Selection Pressure in a Mouse Model of Melanoma. Cell Rep 19:1304-1312
Tung, Nadine; Garber, Judy E; Hacker, Michele R et al. (2016) Prevalence and predictors of androgen receptor and programmed death-ligand 1 in BRCA1-associated and sporadic triple-negative breast cancer. NPJ Breast Cancer 2:16002
Xu, Jie; Sun, Heather H; Fletcher, Christopher D M et al. (2016) Expression of Programmed Cell Death 1 Ligands (PD-L1 and PD-L2) in Histiocytic and Dendritic Cell Disorders. Am J Surg Pathol 40:443-53
Chen, Pei-Ling; Roh, Whijae; Reuben, Alexandre et al. (2016) Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov 6:827-37

Showing the most recent 10 out of 38 publications