Majority of cancer patients will die of metastases originating from disseminated tumor cells (DTCs), years or even decades after treatment. This suggests that DTCs survive in a dormant, nonproliferative state. However, because the biology of DTCs is poorly understood it is critical to ask basic mechanistic questions to further develop translational approaches. Our goal is to identify these mechanisms by combining powerful In vivo models and novel imaging and nano-device technologies available through this collaboration. This consortium provides unprecedented synergy to study dormancy and address three emphasis areas of this RFA: 1) tumor dormancy, activation of dormant cells and the tumor microenvironment (SAI), and dormancy in response to cancer treatment (SA2); 2) imaging the tumor microenvironment during tumor metastasis, and dormancy (SAI), as well as in response to therapies (SA2) and 3) characterization and functional relevance of the tumor microenvironment extracellular matrix (ECM) and how tumor cells stroma interactions (i.e. niches) establish metastatic cell fate (SA2). We hypothesize that at least two scenarios influence DTC dormancy. Scenario 1: DTCs from invasive cancers activate stress signals in response to a growth-restrictive target organ microenvironment inducing dormancy. Scenario 2: therapy and/or microenvironmental stress conditions (e.g. hypoxia) acfing on primary tumor cells carrying a

Public Health Relevance

We will use novel imaging and nano-device technologies to tag, track and isolate disseminating tumor cells departing from primary tumors and proliferating or entering dormancy in target organs. We will discover their metabolic, genomic and transcription profiles to identity a cancer dormancy gene signature relevant to patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA163131-02
Application #
8555313
Study Section
Special Emphasis Panel (ZCA1-SRLB-3 (O1))
Project Start
2011-09-19
Project End
2016-07-30
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$237,439
Indirect Cost
$39,627
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Linde, Nina; Casanova-Acebes, Maria; Sosa, Maria Soledad et al. (2018) Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun 9:21
Fluegen, Georg; Avivar-Valderas, Alvaro; Wang, Yarong et al. (2017) Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 19:120-132
Entenberg, David; Pastoriza, Jessica M; Oktay, Maja H et al. (2017) Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 128:65-77
Harper, Kathryn L; Sosa, Maria Soledad; Entenberg, David et al. (2016) Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature :
Williams, James K; Entenberg, David; Wang, Yarong et al. (2016) Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital 5:
Morris, Brett A; Burkel, Brian; Ponik, Suzanne M et al. (2016) Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells. EBioMedicine 13:146-156
Szulczewski, Joseph M; Inman, David R; Entenberg, David et al. (2016) In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:25086
Karagiannis, George S; Goswami, Sumanta; Jones, Joan G et al. (2016) Signatures of breast cancer metastasis at a glance. J Cell Sci 129:1751-8
Hosseini, Hedayatollah; Obradovi?, Milan M S; Hoffmann, Martin et al. (2016) Early dissemination seeds metastasis in breast cancer. Nature :
Wang, Yarong; Wang, Haoxuan; Li, Jiufeng et al. (2016) Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital 5:

Showing the most recent 10 out of 43 publications