A traditional view of metastasis is that it results from a process similar to Darwinian evolution involving the natural selection of tumor cells that are capable of migration and survival during treatment and at distant sites. In this model the selection of tumor cells exhibiting stable genetic changes occurs, the selected cells are very rare, local and cause metastasis late in tumor progression. The recent development of new technologies, including high-density microarray based expression profiling, multiphoton intravital imaging and the collection and characterization of migratory tumor cells from live tumors and bone marrow disseminated tumor cells (DTCs) from patients, have challenged this traditional model of metastasis. The new technologies indicate that metastatic ability is acquired at much earlier stages of tumor progression than predicted by the Darwinian model, is encoded throughout the bulk of the primary tumor, it is highly plastic and involves transient changes in gene expression. These results have led to the micro-environment model of metastasis. The micro-environment and Darwinian models can be reconciled if tumor progression resulting from the selection of stable genetic changes in the primary tumor during progression, contributes the micro-environments necessary to induce the transient changes in gene expression that support the invasive and metastatic phenotype. That is, the tumor micro-environment initiates the transient epigenetic expression of genes that induce tumor cell migration, survival and metastasis. Examples of such micro-environments in breast tumors are extracellular matrix density, inflammation, and hypoxia. To study these micro-environments and their effects on metastatic phenotype, we have assembled a multidisciplinary team who will collaborate using their special expertise to: 1. fate map tumor cells to determine if tumor cells migrating from different spontaneous, and nano-device generated soluble factor-derived micro-environments, have different migration, dissemination, dormancy and growth patterns in target organs. 2. Determine the spatial and temporal extent and functional consequences of these micro-environments at single cell resolution in vivo in primary tumors and in DTCs 3. Isolate and characterize the metabolomics, genomics and epigenomics of special populations of tumor cells such as the migratory and dormant tumor cells in disseminated locations. 4. Investigate ECM-dependent migratory/invasive, dormant and proliferative tumor cell phenotypes. 5. Extend key observations to human breast and head and neck squamous tumors.

Public Health Relevance

The major research focus of our proposed TMEN Center is the study of the microenvironments in primary tumors that drive tumor cell dissemination and survival, and dormancy and growth at secondary organs. This proposal focuses on breast and head and neck (HNSCC) tumors, with the notion that results obtained will be applicable to a wide variety of tumors. Importantly, we take up the challenge of functionally characterizing the microenvironments in target organs to determine how these define the proliferative or dormant fate of disseminated tumor cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
6U54CA163131-05
Application #
9130482
Study Section
Special Emphasis Panel (ZCA1-SRLB-3 (O1))
Program Officer
Mohla, Suresh
Project Start
2011-09-19
Project End
2016-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
5
Fiscal Year
2015
Total Cost
$426,161
Indirect Cost
$130,937
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Linde, Nina; Casanova-Acebes, Maria; Sosa, Maria Soledad et al. (2018) Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun 9:21
Fluegen, Georg; Avivar-Valderas, Alvaro; Wang, Yarong et al. (2017) Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 19:120-132
Entenberg, David; Pastoriza, Jessica M; Oktay, Maja H et al. (2017) Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 128:65-77
Harper, Kathryn L; Sosa, Maria Soledad; Entenberg, David et al. (2016) Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature :
Williams, James K; Entenberg, David; Wang, Yarong et al. (2016) Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital 5:
Morris, Brett A; Burkel, Brian; Ponik, Suzanne M et al. (2016) Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells. EBioMedicine 13:146-156
Szulczewski, Joseph M; Inman, David R; Entenberg, David et al. (2016) In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:25086
Karagiannis, George S; Goswami, Sumanta; Jones, Joan G et al. (2016) Signatures of breast cancer metastasis at a glance. J Cell Sci 129:1751-8
Hosseini, Hedayatollah; Obradovi?, Milan M S; Hoffmann, Martin et al. (2016) Early dissemination seeds metastasis in breast cancer. Nature :
Wang, Yarong; Wang, Haoxuan; Li, Jiufeng et al. (2016) Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital 5:

Showing the most recent 10 out of 43 publications