The overarching framework for this MIT/Mayo PS-OC is to understand the physical interactions between drugs, tumor tissue and the microenvironment that influence drug distribution and how potentially heterogeneous drug distribution influences tumor cell signaling and therapy resistance emergence (drug efficacy). The PS-OC will require a strong administrative unit to support and coordinate Center activities across all sites, projects and cores; including day-to-day administrative and financial support, planning and evaluation, ongoing communications, pilot and trans-network projects, CAC activities, participation in PS-ON Steering Committee and other initiatives developed over the life of the project. The MIT/Mayo PS-OC will be administratively based at MIT's Koch Institute of Integrative Cancer Research, an NCI-designated Cancer Center that was established in 1974. As demonstrated with past center grants based at the KI, this will allow us to leverage an existing, well-organized administrative infrastructure that will provide support for all business aspects related to the Center. Primary responsibility for scientific project management and managing the workflow of bio-specimens and related high-content data between the two Research Projects and two Shared Resource Cores will be based at the Mayo Clinic. Jointly the members of both teams will be referred to as the Administrative Unit (AU).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA210180-05
Application #
9994237
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2016-08-29
Project End
2021-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Basu, Sankha S; Randall, Elizabeth C; Regan, Michael S et al. (2018) In Vitro Liquid Extraction Surface Analysis Mass Spectrometry (ivLESA-MS) for Direct Metabolic Analysis of Adherent Cells in Culture. Anal Chem 90:4987-4991
Randall, Elizabeth C; Emdal, Kristina B; Laramy, Janice K et al. (2018) Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun 9:4904
Roos, Alison; Dhruv, Harshil D; Peng, Sen et al. (2018) EGFRvIII-Stat5 Signaling Enhances Glioblastoma Cell Migration and Survival. Mol Cancer Res 16:1185-1195
Rothenberg, Daniel A; Taliaferro, J Matthew; Huber, Sabrina M et al. (2018) A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. iScience 9:367-381
Prahl, Louis S; Bangasser, Patrick F; Stopfer, Lauren E et al. (2018) Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration. Cell Rep 25:2591-2604.e8
Kim, Minjee; Ma, Daniel J; Calligaris, David et al. (2018) Efficacy of the MDM2 Inhibitor SAR405838 in Glioblastoma Is Limited by Poor Distribution Across the Blood-Brain Barrier. Mol Cancer Ther 17:1893-1901
Laramy, Janice K; Kim, Minjee; Gupta, Shiv K et al. (2017) Heterogeneous Binding and Central Nervous System Distribution of the Multitargeted Kinase Inhibitor Ponatinib Restrict Orthotopic Efficacy in a Patient-Derived Xenograft Model of Glioblastoma. J Pharmacol Exp Ther 363:136-147
Emdal, Kristina B; Dittmann, Antje; Reddy, Raven J et al. (2017) Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance. Mol Cancer Ther 16:2572-2585
Gampa, Gautham; Vaidhyanathan, Shruthi; Sarkaria, Jann N et al. (2017) Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities? Pharmacol Res 123:10-25