The Membrane Protein Structural Dynamics (MPSD) Consortium seeks to achieve mechanistic understanding of membrane protein operation by linking structure, dynamics and function. Membrane proteins change their conformation to operate. Our purpose is to study different conformational states associated with function and to map the pathway that links operating and resting conformations. Naturally-occurring peptide toxins have become an integral part of research on many membrane proteins. This core employs a new, high-throughput methodology that exploits the structural robustness of natural peptide toxin scaffolds and the power of phage display technology. The purpose is to produce novel synthetic toxins that bind to specific membrane receptors in site and/or state-dependent manner with high affinity and selectivity. This method extends the proven strategy of using high-affinity peptide ligands to study membrane proteins beyond a handful of natural toxins that have been isolated. Peptide toxins isolated from spiders, scorpions, snails and snakes have been potent analytic tools to advance understanding of channels, pumps, transporters, and hormone receptors in vitro and in vivo revealing the roles of these membrane proteins in physiology and their mechanisms of action [1]. In the wild, toxins act to immobilize prey;they are potent (pM-nM affinity) and broadly effective on a wide spectrum of membrane targets. Many toxins lock target receptors in unique functional states. Natural toxins are small (-10-80 amino acids) and are constructed on resilient structural scaffolds that tolerate wide residue diversity to yield products with markedly different properties. Laboratory synthesis of peptide toxins using bacteria or by de novo chemical methods has proven straightfoHA/ard in most cases. These strategies improve yield compared to isolation of natural products and, significantly, allow incorporation of useful modifications such as residue alterations to improve target specificity or affinity, to alter impact on receptor function, or to attach cargo for delivery to specific cellular and molecular locations [2, 3]. Natural toxins and their synthetic variants have been used to identify membrane receptor subtypes in different tissue and subcellular locales [4];distinguish roles in physiology and disease [5];delineate molecular mechanisms [6];immunopurify target receptors [7];to treat pain via blockade of ion channels [8];and, of unique relevance here, to define receptor structure as a function of conformational state using biophysical [9], optical [3] and computational methods [10]. Even though the predicted diversity of the natural peptide """"""""toxome"""""""" extrapolated from biochemical and genetic studies is vast (>11 million), specific targets are not identified for most of the hundreds of toxins that have been isolated and studied. Those toxins that bind to known receptors are often of low affinity or cross-react with related targets. This state-of-affairs is easily understood: neither their purpose in the wild nor non-directed searches for target receptors favor isolation of specific, high-affinity toxins. Here, these problems are avoided by cloning toxins based on their functional attributes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54GM087519-01A1
Application #
7922839
Study Section
Special Emphasis Panel (ZGM1-CBB-3 (GL))
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2010-04-01
Budget End
2011-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$236,047
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Carrasquel-Ursulaez, Willy; Alvarez, Osvaldo; Bezanilla, Francisco et al. (2018) Determination of the Stoichiometry between ?- and ?1 Subunits of the BK Channel Using LRET. Biophys J 114:2493-2497
Kintzer, Alexander F; Green, Evan M; Dominik, Pawel K et al. (2018) Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc Natl Acad Sci U S A 115:E9095-E9104
Quick, Matthias; Abramyan, Ara M; Wiriyasermkul, Pattama et al. (2018) The LeuT-fold neurotransmitter:sodium symporter MhsT has two substrate sites. Proc Natl Acad Sci U S A 115:E7924-E7931
Nissen, Neel I; Anderson, Kristin R; Wang, Huaixing et al. (2018) Augmenting the antinociceptive effects of nicotinic acetylcholine receptor activity through lynx1 modulation. PLoS One 13:e0199643
Sun, Chang; Benlekbir, Samir; Venkatakrishnan, Padmaja et al. (2018) Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557:123-126
Mahinthichaichan, Paween; Gennis, Robert B; Tajkhorshid, Emad (2018) Cytochrome aa3 Oxygen Reductase Utilizes the Tunnel Observed in the Crystal Structures To Deliver O2 for Catalysis. Biochemistry 57:2150-2161
Wen, Po-Chao; Mahinthichaichan, Paween; Trebesch, Noah et al. (2018) Microscopic view of lipids and their diverse biological functions. Curr Opin Struct Biol 51:177-186
Ren, Zhenning; Lee, Jumin; Moosa, Mahdi Muhammad et al. (2018) Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proc Natl Acad Sci U S A 115:5962-5967
Razavi, Asghar M; Khelashvili, George; Weinstein, Harel (2018) How structural elements evolving from bacterial to human SLC6 transporters enabled new functional properties. BMC Biol 16:31
Wang, Zongan; Jumper, John M; Wang, Sheng et al. (2018) A Membrane Burial Potential with H-Bonds and Applications to Curved Membranes and Fast Simulations. Biophys J 115:1872-1884

Showing the most recent 10 out of 282 publications