Spermatogenesis in mammals is dependent on androgens produced by testicular Leydig cells. Genetic and pharmacological experiments suggest that androgen levels, working through Sertoli cells, support progression through spermatogenesis. This proposal addresses how androgen receptor function in Sertoli cells supports spermatogenesis. We have identified the Claudin 3 (Cldn3) gene as an androgen responsive gene in Sertoli cells. We have shown that CLDN3, a four-pass transmembrane protein, is localized to Sertoli cell tight junctions during the stages of highest androgen receptor expression. Sertoli cell tight junctions create one of the most impermeable barriers in mammals. Even a modest disruption of this barrier results in infertility, while at the same time spermatocytes are constantly crossing the tight junction barrier into the adluminal compartment of the testis. Together with peritubular myoid cells and regulatory T cells, the Sertoli cell tight junctions collectively form the blood testis barrier (BTB). In mice with conditional ablation of Ar in Sertoli cells, CldnS is down-regulated, the permeability of the BTB to small molecules is increased, and the immune privilege provided to germ cells is compromised. This proposal addresses the hypothesis that androgens support spermatogenesis by creating a microenvironment permissive for spermatogenesis. The Sertoli cell tight junctions regulate this microenvironment.
In aim 1 we characterize a Sertoli cell conditional knockout of Cldn3 and determine if the permeability of the BTB is relaxed and the immune privilege is compromised. Functional characterization of the Sertoli cell tight junctions will be assessed in primary culture by measuring transepithelial resistance.
In aim 2 we test the importance of the stage-specific expression of Cldn3 by driving its expression throughout the cycle of the seminiferous epithelium using an inducible transgene. Characterization will include light and electron microscopy and functional assays that probe the integrity of the BTB. These studies will lead to a better understanding of the function of testosterone for normal spermatogenesis and fertility, and to the molecular mechanism of hormone-based contraceptives for men.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-L (54))
Program Officer
De Paolo, Louis V
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Chakraborty, Papia; Buaas, F William; Sharma, Manju et al. (2014) LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 32:860-73
Sanz, Elisenda; Evanoff, Ryan; Quintana, Albert et al. (2013) RiboTag analysis of actively translated mRNAs in Sertoli and Leydig cells in vivo. PLoS One 8:e66179
Anawalt, Bradley D; Hotaling, James M; Walsh, Thomas J et al. (2012) Performance of total testosterone measurement to predict free testosterone for the biochemical evaluation of male hypogonadism. J Urol 187:1369-73
Navarro, Victor M; Ruiz-Pino, Francisco; Sanchez-Garrido, Miguel A et al. (2012) Role of neurokinin B in the control of female puberty and its modulation by metabolic status. J Neurosci 32:2388-97
Cazorla, Maxime; Shegda, Mariya; Ramesh, Bhavani et al. (2012) Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels. J Neurosci 32:2398-409
Gill, John C; Navarro, VĂ­ctor M; Kwong, Cecilia et al. (2012) Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid-negative feedback than Kiss1. Endocrinology 153:4883-93
Navarro, V M; Gottsch, M L; Wu, M et al. (2011) Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology 152:4265-75
Navarro, Victor M; Castellano, Juan M; McConkey, Sarah M et al. (2011) Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab 300:E202-10
Gottsch, Michelle L; Popa, Simina M; Lawhorn, Janessa K et al. (2011) Molecular properties of Kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology 152:4298-309
Kim, Joshua; Semaan, Sheila J; Clifton, Donald K et al. (2011) Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 152:2020-30

Showing the most recent 10 out of 110 publications