Retinopathy of prematurity (ROP) is afflicts as much as 50% of all extremely low gestational age neonates (ELGANs, <28 weeks/<1250g). Ibuprofen and caffeine have been shown to decrease the risk of severe ROP in ELGANs and in animal models. Using unique techniques developed in our laboratory, we will examine the specific effects on human retinal microvascular endothelial tip cells (ECs), the driving force behind aberrant angiogenesis. We will study their dynamic interaction with astrocytes, their selection, activation, and migration during oxidative stress. More importantly, we will examine the efficacy of ibuprofen and/or caffeine in preventing their activation and reducing their capacity to sense angiogenic cues. The overarching goal of this proposal is to study the behavior of EC tip cells and their relationship with astrocytes in the setting of oxidative stress (hyperoxia/hypoxia cycling);and to determine whether ibuprofen coadministered with caffeine will preserve fip cell quiescence. Using state-of-the-art bioanalytics, proteomics, pharmacogenomics, bioinformatics, and imaging techniques, we will use three interrelated specific aims: 1) to examine the relationship between human retinal microvascular ECs and human brain astrocytes in normoxia and in oxidative stress (brief hyperoxia/hypoxia cycling). We will focus on VEGF and ECM proteolysis, VEGF release and increased gradient;tip cell activation, release and recapture of VEGF, and migration;and VEGF and Notch signaling mechanisms;2) to establish the roles of VEGFR-2, VEGFR-3, NP-1, Notch 1, D1I4, and Jagged 1 on tip cell selection, activation and migration using small interference RNA (SiRNA) knockdown of these specific genes in human retinal microvascular ECs. We will study the influence of astrocytes;and 3) to determine whether ibuprofen potentiated with caffeine will protect and preserve normal human retinal microvascular EC and astrocyte growth and function in oxidative stress. We will use state-of-the-art technologies to provide insights on the biomolecular mechanisms, pharmacokinetics, drug interactions;drug transport and metabolism.

Public Health Relevance

These specific aims will use a unique and novel model for oxidative stress (brief, frequent hyperoxia/hypoxia cycling) to study the effects on retinal microvascular endothelial fip cells selection, activation, and migration, and their relationship to astrocytes. We will also use a unique pharmacologic approach to prevent or curtail the biological cues responsible for aberrant tip cell migration and activation. ROP is the leading cause of childhood blindness and the epidemic is increasing. The current, popular use of intravitreal Avastin is highly invasive. In addition to the added pain and distress to the micropremie, it causes retinal hemorrhage, retinal detachment, and choroidal ruptures. More importantly, it may have adverse effects on associated retinal cells such as astrocyges and microglia and influence normal brain development. The need for other potential therapies is vital. Our proposed studies will provide further understanding of the mechanisms associated with aberrant fip cell migration and the role of genes involved in ECM and VEGF degradation, and VEGF and Notch signaling in oxidative stress. These projects will provide additional information and add to our current repertoire gained from previous experiments. We have all the necessary technologies and systems in order to successful accomplish these proposed proposals. They will provide the basis for clinical trials utilizing an alternate, safe, effective, and non-invasive pharmacologic approach to treatment of ROP.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Suny Downstate Medical Center
United States
Zip Code
Beharry, Kay D; Cai, Charles L; Skelton, Jacqueline et al. (2018) Oxygen-Induced Retinopathy from Recurrent Intermittent Hypoxia Is Not Dependent on Resolution with Room Air or Oxygen, in Neonatal Rats. Int J Mol Sci 19:
Beharry, Kay D; Cai, Charles L; Ahmad, Taimur et al. (2018) Impact of Chronic Neonatal Intermittent Hypoxia on Severity of Retinal Damage in a Rat Model of Oxygen-Induced Retinopathy. J Nat Sci 4:
Nicolau, Yona; Bany-Mohammed, Fayez; Cai, Charles L et al. (2018) SiRNA silencing of VEGF, IGFs, and their receptors in human retinal microvascular endothelial cells. Am J Transl Res 10:1990-2003
Cai, Charles; Ahmad, Taimur; Valencia, Gloria B et al. (2018) Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver. Growth Horm IGF Res 41:54-63
Valencia, Arwin M; Abrantes, Maria A; Hasan, Jamal et al. (2018) Reactive Oxygen Species, Biomarkers of Microvascular Maturation and Alveolarization, and Antioxidants in Oxidative Lung Injury. React Oxyg Species (Apex) 6:373-388
Beharry, Kay D; Cai, Charles L; Valencia, Gloria B et al. (2018) Human retinal endothelial cells and astrocytes cultured on 3-D scaffolds for ocular drug discovery and development. Prostaglandins Other Lipid Mediat 134:93-107
Wang, Xue; Niu, Jin; Li, Jun et al. (2018) Temporal Effects of Combined Birinapant and Paclitaxel on Pancreatic Cancer Cells Investigated via Large-Scale, Ion-Current-Based Quantitative Proteomics (IonStar). Mol Cell Proteomics 17:655-671
Quan, Michelle; Cai, Charles L; Valencia, Gloria B et al. (2017) MnTBAP or Catalase Is More Protective against Oxidative Stress in Human Retinal Endothelial Cells Exposed to Intermittent Hypoxia than Their Co-Administration (EUK-134). React Oxyg Species (Apex) 3:47-65
Shen, Xiaomeng; Shen, Shichen; Li, Jun et al. (2017) An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts. J Proteome Res 16:2445-2456
Valencia, Arwin M; Cai, Charles L; Tan, Jeffrey et al. (2017) Intravitreal bevacizumab alters type IV collagenases and exacerbates arrested alveologenesis in the neonatal rat lungs. Exp Lung Res 43:120-133

Showing the most recent 10 out of 52 publications