The UC Davis MIND Institute IDDRC Rodent Behavior Core (RBC) is fundamental to Center projects seeking to understand the biological mechanisms underlying IDD and to pursue translational discovery of therapeutics. This is a completely new core that builds on existing and newly available resources and expertise at the MIND Institute and UC Davis. Its goal is to meet the high demand for behavioral testing of rodent models of IDD at UC Davis. The RBC will assist investigators with IDDRC projects in generating high-quality behavioral data for publication, preclinical discoveries to inform human clinical trials, and pilot data for new studies. Further, the availability of the services of the RBC is likely to encourage additional UC Davis researchers to become interested in entering the IDD research field and becoming members of the IDDRC, and we will support this interest through active outreach efforts. Comprehensive behavioral assays relevant to IDD, including those developed by Drs. Crawley and Berman, are employed worldwide to understand causal mechanisms and develop effective therapeutics. The proposed RBC will employ standardized and innovative behavioral assays relevant to the behavioral symptoms of IDD. Services will include (a) access to modern, efficient, start-of-the-art behavioral testing facilities;(b) training for investigators and their staff"""""""" in behavioral assay procedures and the use of behavioral testing equipment;(c) hands-on supervision in all aspects of behavioral testing and equipment use;(d) consultation on experimental design and interpretation of results;(e) assistance in developing new assays required by users; (f) training and supervision in drug administration for behavioral pharmacology studies;(g) access to facilities for harvesting tissue from behaviorally tested mice and rats;(h) access to mutant mouse and rat models;(i) guidance to access related resources at UC Davis, including core facilities for genetics and for generating new lines of mutant mice;and (j) facilitation of collaborations between IDDRC investigators. Services will further include (k) consultation for preparing lACUC protocols, grant applications, and manuscripts. In addition, the core will offer (I) direct behavioral testing services conducted by core staff. Expertise of the core director, co-director, and managers includes extensive knowledge and experience in animal models of IDD conditions, behavioral phenotyping of mice with targeted gene mutations, behavioral phenotyping of inbred strains of mice and rats, and behavioral responses to drug treatments, immune challenges, and environmental toxins in mice and rats. Mouse facilities are located at the UC Davis School of Medicine campus in Sacramento. Rat facilities are located at the nearby main campus in Davis. A high level of scientific and practical interactions is already in place between the two sites. Five tiers of service usage will be offered: (1) consultation;(2) unsupervised use of equipment available in the core facilities;(3) training and supervision in conducting behavioral tests using core equipment;(4) battery of assays conducted by core staff; and (5) tailored sets of assays conducted by core staff. Combinations of services will be designed to match the needs of each user.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD079125-02
Application #
8740545
Study Section
Special Emphasis Panel (ZHD1-DSR-H)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
$142,397
Indirect Cost
$49,931
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Jones, Karen L; Van de Water, Judy (2018) Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry :
Jones, Karen L; Pride, Michael C; Edmiston, Elizabeth et al. (2018) Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol Psychiatry :
Ligsay, Andrew; El-Deeb, Marwa; Salcedo-Arellano, Maria J et al. (2018) General Anesthetic Use in Fragile X Spectrum Disorders. J Neurosurg Anesthesiol :
Silverman, Jill L; Ellegood, Jacob (2018) Behavioral and neuroanatomical approaches in models of neurodevelopmental disorders: opportunities for translation. Curr Opin Neurol 31:126-133
Conners, Frances A; Tungate, Andrew S; Abbeduto, Leonard et al. (2018) Growth and Decline in Language and Phonological Memory Over Two Years Among Adolescents With Down Syndrome. Am J Intellect Dev Disabil 123:103-118
Shelton, Annie L; Wang, Jun Y; Fourie, Emily et al. (2018) Middle Cerebellar Peduncle Width-A Novel MRI Biomarker for FXTAS? Front Neurosci 12:379
Zhan, Liang; Jenkins, Lisanne M; Zhang, Aifeng et al. (2018) Baseline connectome modular abnormalities in the childhood phase of a longitudinal study on individuals with chromosome 22q11.2 deletion syndrome. Hum Brain Mapp 39:232-248
Ozonoff, Sally; Li, Deana; Deprey, Lesley et al. (2018) Reliability of parent recall of symptom onset and timing in autism spectrum disorder. Autism 22:891-896
Kerin, Tara; Volk, Heather; Li, Weiyan et al. (2018) Association Between Air Pollution Exposure, Cognitive and Adaptive Function, and ASD Severity Among Children with Autism Spectrum Disorder. J Autism Dev Disord 48:137-150
Weir, R K; Bauman, M D; Jacobs, B et al. (2018) Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains. J Comp Neurol 526:262-274

Showing the most recent 10 out of 175 publications