One goal of the UC Davis MIND Institute IDDRC is to more thoroughly address the biological complexity of intellectual and developmental disabilities (IDD), such as fragile X syndrome (FXS) and autism spectrum disorders (ASD). The overall objective of the Biological Analysis Core (BAC) is to facilitate an integrated experimental approach to the study of the molecular and cellular mechanisms of neuronal and immune function, including interactions between the two systems, in the context of IDD. This type of comprehensive core does not currently exist at the MIND Institute or on the UC Davis campus. The BAC is designed to advance and support research on emerging concepts regarding cellular and molecular mechanisms contributing to the risk and clinical heterogeneity of conditions associated with IDD, including variable response to therapy. Services provided will facilitate analyses of neuronal development, direct and indirect interactions between the neuronal and immune systems, and cellular and molecular biology. The BAC will also serve as a liaison to the vast array of resources at UC Davis for studying environmental exposures and extend the core's assays and expertise to testing such exposure effects on immune and neuronal cells for IDDRC projects. Recent achievements in these key areas by investigators included in the proposed IDDRC can now provide the infrastructure needed to advance our understanding of the biologic underpinnings of FXS, ASD, and other IDD conditions. This new core will be a unique resource for the MIND Institute IDDRC and the entire IDDRC network. The BAC is charged with providing core services that address components from each of the MIND Institute IDDRC central themes: Integrated Biobehavioral Characterization of IDD, Environmental Contributions to IDD, and Targeted Treatments for IDD. The BAC is designed to: 1) support the scientific agenda of the IDDRC; 2) provide services and training related to analysis in the areas of cellular and molecular neurobiology and Immunology; 3) increase access to cutting-edge resources in cellular and molecular neurobiology and immunology that will enhance the research of IDDRC investigators; 4) work with each of the IDDRC cores to support the integration and dissemination of services; and 5) work with the Administrative Core to integrate the BAC into the broader context of the UC Davis IDDRC and the national network of NlCHD-funded IDDRCs. The expertise of the BAC director, co-director, and core staff members includes extensive knowledge and experience in immunology, molecular and cellular neurobiology and environmental toxicology in the area of IDD. The key members of the BAC have previously worked together successfully to integrate seemingly disparate disciplines to better understand the neurobiology of ASD. We will develop these successful relationships into a state-of-the-art core to provide users with five tiers of service: 1) consultation in model selection and experimental design; 2) training of users on available equipment; 3) training and supervision in conducting assays of interest where applicable; 4) provision of a battery of assays conducted by core staff; and 5) tailored sets of analyses conducted by core staff. Combinations of service can be designed to match user needs. Assistance with data interpretation will be provided as needed for each tier.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54HD079125-05S2
Application #
9924042
Study Section
Special Emphasis Panel (ZHD1)
Program Officer
Parisi, Melissa
Project Start
Project End
2020-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Klusek, Jessica; Ruber, Alexis; Roberts, Jane E (2018) Impaired eye contact in the FMR1 premutation is not associated with social anxiety or the broad autism phenotype. Clin Neuropsychol 32:1337-1352
Miller, Meghan; Iosif, Ana-Maria; Young, Gregory S et al. (2018) The dysregulation profile in preschoolers with and without a family history of autism spectrum disorder. J Child Psychol Psychiatry :
Stoppel, Laura J; Kazdoba, Tatiana M; Schaffler, Melanie D et al. (2018) R-Baclofen Reverses Cognitive Deficits and Improves Social Interactions in Two Lines of 16p11.2 Deletion Mice. Neuropsychopharmacology 43:513-524
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J (2018) 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 92:3337-3345
Berg, Elizabeth L; Copping, Nycole A; Rivera, Josef K et al. (2018) Developmental social communication deficits in the Shank3 rat model of phelan-mcdermid syndrome and autism spectrum disorder. Autism Res 11:587-601
Klusek, Jessica; Porter, Anna; Abbeduto, Leonard et al. (2018) Curvilinear Association Between Language Disfluency and FMR1 CGG Repeat Size Across the Normal, Intermediate, and Premutation Range. Front Genet 9:344
Loveall, Susan J; Channell, Marie Moore; Abbeduto, Leonard et al. (2018) Verb production by individuals with Down syndrome during narration. Res Dev Disabil 85:82-91
Adlof, Suzanne M; Klusek, Jessica; Hoffmann, Anne et al. (2018) Reading in Children With Fragile X Syndrome: Phonological Awareness and Feasibility of Intervention. Am J Intellect Dev Disabil 123:193-211
Roberts, Jane E; Ezell, Jordan E; Fairchild, Amanda J et al. (2018) Biobehavioral composite of social aspects of anxiety in young adults with fragile X syndrome contrasted to autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 177:665-675
Sowell, K D; Uriu-Adams, J Y; Van de Water, J et al. (2018) Implications of altered maternal cytokine concentrations on infant outcomes in children with prenatal alcohol exposure. Alcohol 68:49-58

Showing the most recent 10 out of 175 publications