The last decade of research in intellectual and developmental disabilities (IDD) has been notably characterized by rapid advances in understanding the nature and complexity of inherited susceptibilities to IDD, but genetic discovery has not yet fulfilled the promise of more effective intervention, even for monogenic IDD syndromes. It is the immediate priority of a next generation of research to capitalize upon knowledge about causation in IDD (both genetic and environmental) and translate it into higher-impact intervention for as many individuals and families affected as possible. In the second cycle of the IDDRC at Washington University in St. Louis (IDDRC@WUSTL), our strategy for contributing to this effort preserves our Center's original focus on characterization of white matter injury to the newborn brain, but extends the scope of Core activity to facilitate a comprehensive approach to understanding and preventing developmental disorders of neural connectivity at the respective levels of cell, synapse, circuit, and behavior, and brings on line major strengths of WUSTL in genomics, behavioral/cognitive neuroscience, and clinical-translational science. The overarching goals of our Center are as follows: (1) To facilitate high-caliber, translational research on the pathogenesis and treatment of IDDs by sustaining an innovative Core structure that attracts and supports qualified, collaborative investigators, and interacts synergistically with complementary Core facilities of other U.S. IDDRCs. We propose to support an Administrative Core, a Developmental Neuroimaging Core, a Model Systems Core (encompassing capacity and expertise for both animal and cellular models of IDD), and a Clinical Translational Core. (2) To cultivate nodes of interdisciplinary scientific activity in frotiers of IDD research which are critical for the derivation of higher-impact treatment and preventive intervention, across 4 major themes: (i) The prevention of prematurity and its neurodevelopmental consequences; (ii) The elucidation of robust intermediate DD phenotypes (as markers of pathogenic processes, targets of early intervention, and indices of response to treatment); (iii) In-depth characterization of the developing human brain, and (iv) Functional genomic approaches to elucidating convergent mechanisms of IDD pathogenesis. (3) To conduct a signature research project that represents a bold, critical step toward higher-impact intervention for IDD, capitalizes upon both the Core structure of our IDDRC and institutional strengths at WUSTL, and epitomizes the manner in which our IDDRC facilitates trans-disciplinary research. Our project is designed to elucidate mechanisms of sex-specific modulation-of-expression of inherited risk for autism spectrum disorders, at the respective levels of cell, brain, and behavior. A goal is to identify compensatory mechanisms underlying resilience among females in ASD-affected families, for the purpose of recapitulating those mechanisms in novel interventions which would be of major relevance to a large proportion of the population of individuals at risk or affected by familial autistic syndromes.

Public Health Relevance

Intellectual and Developmental Disabilities adversely affect 1 in 6 U.S. children and their families. The Intellectual and Developmental Disabilities Research Center at the Washington University School of Medicine (IDDRC@WUSTL) is a scientific program composed of three core facilities, one dedicated to studies of cellular and molecular mechanisms of causation in IDD, one dedicated to the identification of 'signatures' of developmental disability that can be imaged in the developing brain, and one dedicated to in-depth clinical assessment of human subjects and the translation of new understanding of causal mechanisms into higher impact intervention.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54HD087011-03S1
Application #
9592488
Study Section
Program Officer
Parisi, Melissa
Project Start
2018-02-01
Project End
2019-05-31
Budget Start
2018-02-01
Budget End
2018-05-31
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Washington University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M et al. (2018) Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain. Sci Rep 8:5302
Marek, Scott; Dosenbach, Nico U F (2018) The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin Neurosci 20:133-140
Agrawal, Arpana; Rogers, Cynthia E; Lessov-Schlaggar, Christina N et al. (2018) Alcohol, Cigarette, and Cannabis Use Between 2002 and 2016 in Pregnant Women From a Nationally Representative Sample. JAMA Pediatr :
Rensing, Nicholas; Moy, Brianna; Friedman, Joseph L et al. (2018) Longitudinal analysis of developmental changes in electroencephalography patterns and sleep-wake states of the neonatal mouse. PLoS One 13:e0207031
Maloney, Susan E; Creeley, Catherine E; Hartman, Richard E et al. (2018) Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment. Neurobiol Learn Mem :
Pineda, Roberta; Dewey, Kelsey; Jacobsen, Amy et al. (2018) Non-Nutritive Sucking in the Preterm Infant. Am J Perinatol :
Foland-Ross, Lara C; Reiss, Allan L; Mazaika, Paul K et al. (2018) Longitudinal assessment of hippocampus structure in children with type 1 diabetes. Pediatr Diabetes :
Lin, Leanne Y; Ramsey, Lenny; Metcalf, Nicholas V et al. (2018) Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity. PLoS One 13:e0202504
Pilarowski, Genay O; Vernon, Hilary J; Applegate, Carolyn D et al. (2018) Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J Med Genet 55:561-566
Zhang, Bo; Zou, Jia; Han, Lirong et al. (2018) The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia 59:1796-1806

Showing the most recent 10 out of 188 publications