CLINICAL TRANSLATIONAL CORE (CORE B) ABSTRACT The objectives of the new Clinical Translational Core of our IDDRC are to accelerate the translation of research discoveries into new treatments for neurodevelopmental disorders, through collaboration with basic scientists and clinicians, as well as to train future leaders in translational neuroscience. Resources offered by the Clinical Translational Core include preclinical support through a Human Neuron Core Component, composed of a Cellular Assay Development and Screening Service and a Human Neuron Differentiation Service. Additionally, support for translational work includes resources through a Clinical and Regulatory Affairs Service, a Data Analysis Core Component, Biorepository and preclinical consultation. The core has a proven record of success in designing and launching preclinical and clinical projects for IDDRC investigators.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54HD090255-01
Application #
9229203
Study Section
Special Emphasis Panel (ZHD1-DSR-H (50))
Project Start
2016-09-23
Project End
2021-05-31
Budget Start
2016-09-01
Budget End
2017-05-31
Support Year
1
Fiscal Year
2016
Total Cost
$143,952
Indirect Cost
$62,623
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Sun, Ye; Smith, Lois E H (2018) Retinal Vasculature in Development and Diseases. Annu Rev Vis Sci 4:101-122
Cheng, Henry H; Rajagopal, Satish K; Sansevere, Arnold J et al. (2018) Post-arrest therapeutic hypothermia in pediatric patients with congenital heart disease. Resuscitation 126:83-89
Cakir, Bertan; Liegl, Raffael; Hellgren, Gunnel et al. (2018) Thrombocytopenia is associated with severe retinopathy of prematurity. JCI Insight 3:
Centanni, Tracy M; Norton, Elizabeth S; Park, Anne et al. (2018) Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Dev Sci 21:e12658
Smith, Richard S; Kenny, Connor J; Ganesh, Vijay et al. (2018) Sodium Channel SCN3A (NaV1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development. Neuron 99:905-913.e7
Wagner, Jennifer B; Luyster, Rhiannon J; Moustapha, Hana et al. (2018) Differential Attention to Faces in Infant Siblings of Children with Autism Spectrum Disorder and Associations with Later Social and Language Ability. Int J Behav Dev 42:83-92
Tsai, Peter T; Rudolph, Stephanie; Guo, Chong et al. (2018) Sensitive Periods for Cerebellar-Mediated Autistic-like Behaviors. Cell Rep 25:357-367.e4
Cobos, Enrique J; Nickerson, Chelsea A; Gao, Fuying et al. (2018) Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling. Cell Rep 22:1301-1312
Dao, Duy T; Vuong, Jacqueline T; Anez-Bustillos, Lorenzo et al. (2018) Intranasal delivery of VEGF enhances compensatory lung growth in mice. PLoS One 13:e0198700
Liu, Changliang; Kershberg, Lauren; Wang, Jiexin et al. (2018) Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell 172:706-718.e15

Showing the most recent 10 out of 498 publications