MOUSE NEURODEVELOPMENTAL BEHAVIOR CORE (CORE D) ABSTRACT The Mouse Neurodevelopmental Behavior Core (NBC) at Boston Children's Hospital (BCH) is designed to enable the comprehensive identification and quantification of complex behavioural phenotypes in mouse models of neurodevelopmental disorders. As well as providing cutting edge equipment, we continually validate the best protocols and generate base-line data for quality control management. Having such capabilities for in vivo analysis of mouse models of human disorders facilitates efficacy testing of novel therapeutic compounds and interventions, to provide evidence for transitioning into the clinic. The Core is equipped to perform extensive batteries of tests that phenotype specific social, emotional and cognitive behaviors, as well as motor, auditory and visual function, together with the general health of the animals. In addition, the NBC provides complementary technologies for evaluating the neurobiological mechanisms behind changes in behaviour, such as EEG, ECG and lasers for optogenetic studies. The core also provides a unique opportunity for training fellows, graduate and undergraduate students, as well as PIs, in the in vivo analysis of mouse models of human disorders. Looking ahead, we aim to keep the NBC at the forefront of in vivo analysis of genetic models of human disorders. One major new initiative will be the establishment of a rat behavioral facility to exploit the increasing ability to efficiently modify the genome of rats to create genetic models of tuberosclerosis, Rett syndrome and other neurodevelopmental disorders. This will occupy ~1500 sq.ft of new space for the NBC and we have the required equipment for measuring cognition, anxiety, exploration and motor function in rats as well as EEG and in vivo imaging capacity. Another initiative is to offer reverse light housing for up to 300 mouse cages, so that investigators can study mouse behavior over the full diurnal cycle. We are also developing synergistic partnerships with the Cellular Imaging Core that has a two photon microscope to image neurons in conscious behaving mice, to bring together cutting edge imaging and behavioral technologies to the enable the mechanistic study of neurodevelopmental diseases. Finally, we recognize that the IDDRC network of behavioral Core facilities in the US provides a unique opportunity to establish a set of standards for behavioral assessment and reporting of rodent models of neurodevelopmental disorders.We will run with Jackie Crawley (Director, UC Davis, IDDRC Behavior Core Facility) a series of comparative studies to establish standardized protocols for execution and analysis of neurodevelopmental disorders.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD090255-05
Application #
10003043
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Boston Children's Hospital
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Nowak-Sliwinska, Patrycja; Alitalo, Kari; Allen, Elizabeth et al. (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21:425-532
Di Gioia, Silvio Alessandro; Shaaban, Sherin; Tüysüz, Beyhan et al. (2018) Recessive MYF5 Mutations Cause External Ophthalmoplegia, Rib, and Vertebral Anomalies. Am J Hum Genet 103:115-124
Shaaban, Sherin; MacKinnon, Sarah; Andrews, Caroline et al. (2018) Genome-Wide Association Study Identifies a Susceptibility Locus for Comitant Esotropia and Suggests a Parent-of-Origin Effect. Invest Ophthalmol Vis Sci 59:4054-4064
Tyssowski, Kelsey M; DeStefino, Nicholas R; Cho, Jin-Hyung et al. (2018) Different Neuronal Activity Patterns Induce Different Gene Expression Programs. Neuron 98:530-546.e11
Bardai, Farah H; Wang, Liqun; Mutreja, Yamini et al. (2018) A Conserved Cytoskeletal Signaling Cascade Mediates Neurotoxicity of FTDP-17 Tau Mutations In Vivo. J Neurosci 38:108-119
Modi, Meera E; Sahin, Mustafa (2018) The Way Forward for Mechanism-Based Therapeutics in Genetically Defined Neurodevelopmental Disorders. Clin Pharmacol Ther 104:603-606
Wong, Man Yan; Liu, Changliang; Wang, Shan Shan H et al. (2018) Liprin-?3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 115:2234-2239
Wojcik, Monica H; Wierenga, Klaas J; Rodan, Lance H et al. (2018) Beta-Ketothiolase Deficiency Presenting with Metabolic Stroke After a Normal Newborn Screen in Two Individuals. JIMD Rep 39:45-54
Hong, Y Kate; Burr, Eliza F; Sanes, Joshua R et al. (2018) Heterogeneity of retinogeniculate axon arbors. Eur J Neurosci :
Sundberg, Maria; Tochitsky, Ivan; Buchholz, David E et al. (2018) Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry 23:2167-2183

Showing the most recent 10 out of 498 publications