Waisman Center investigators study Intellectual and Developmental Disabilities (IDD) through elucidation of molecular pathways that are altered in genetic and epigenetic conditions affecting nervous system function. Compared with other genetically tractable model organisms, rodents afford the highest similarity to humans in anatomy, physiology, and genetics. Thus, study of IDD has relied on development of rodent models of various disorders. In recent years, complementary development of human stem cell-based models to study similar processes has greatly expanded the scope and relevance of studies of IDD. Investigators of the Waisman Center have spearheaded research in a number of IDD conditions, and many investigators rely on complementary mouse and human stem cell models to study different facets of these disorders. Use of these models provides the means to evaluate candidate therapeutics, as well as develop novel screens to identify promising compounds. The resources of the IDD Models Core, almost all housed within the Waisman Center itself, provide the tools for development of mouse and human stem-cell derived models of IDD. Therefore, we propose two specific aims for the next project period.
Aim 1 is to create and analyze rodent models of IDD. The objectives of this aim are to: 1) provide advanced technical services in the generation, cryopreservation, and maintenance of mutant or genetically engineered strains of mice and rats; 2) provide advanced behavioral testing services and facilities for the phenotypic characterization of novel strains of rodents; 3) provide training and consultation to investigators and laboratory personnel; and 4) facilitate maintenance and exchange of unique rodent models between institutions.
Aim 2 is to to develop human stem cell models of IDD and facilitate phenotyping of neurodevelopmental defects. The objectives of this aim are to: (1) support the generation of induced pluripotent stem cell (iPSC) lines directly from individuals diagnosed with IDD; (2) support development of IDD-specific PSC lines through genome editing; (3) provide high quality, cost effective, cellular and molecular neuroscience technology and expertise to IDDRC investigators to facilitate phenotyping of neurodevelopmental defects in human PSC derived cells and (4) provide training and technical support in human stem cell culture, phenotyping and gene editing to promote usage of new approaches by our investigators. These initiatives are further served by state-of-the-art imaging and molecular biology analysis tools housed within the Waisman Center. With support from the Administrative Core, linkages are provided to complementary capabilities elsewhere on campus, such as those offered by the UW Biotechnology Center, UW Comprehensive Cancer Center, and other partnerships. These resources and partnerships are leveraged to facilitate usage of a large repertoire of techniques to enhance multidimensional analysis of IDD models, and to promote the development and testing of potential therapeutics.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
United States
Zip Code
Rubenstein, Eric; Chawla, Devika (2018) Broader autism phenotype in parents of children with autism: a systematic review of percentage estimates. J Child Fam Stud 27:1705-1720
Jiang, Matthew J; Rosengren, Karl S (2018) Action Errors: A Window Into the Early Development of Perception-Action System. Adv Child Dev Behav 55:145-171
Chen, Li-Mei; Hustad, Katherine C; Kent, Ray D et al. (2018) Dysarthria in Mandarin-Speaking Children With Cerebral Palsy: Speech Subsystem Profiles. J Speech Lang Hear Res 61:525-548
Zhong, Xiaofen; Li, Hongda; Kim, Jason et al. (2018) Regulation of neural differentiation, synaptic scaling and animal behavior by MeCP2 phophorylation. Neurobiol Learn Mem :
Betthauser, Tobey J; Cody, Karly A; Zammit, Matthew D et al. (2018) In vivo characterization and quantification of neurofibrillary tau PET radioligand [18F]MK-6240 in humans from Alzheimer's disease dementia to young controls. J Nucl Med :
Zhao, Hien Tran; Damle, Sagar; Ikeda-Lee, Karli et al. (2018) PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. J Clin Invest 128:359-368
Pomper, Ron; Saffran, Jenny R (2018) Familiar Object Salience Affects Novel Word Learning. Child Dev :
Papale, Ligia A; Seltzer, Leslie J; Madrid, Andy et al. (2018) Differentially Methylated Genes in Saliva are linked to Childhood Stress. Sci Rep 8:10785
Dean 3rd, Douglas C; Planalp, E M; Wooten, W et al. (2018) Investigation of brain structure in the 1-month infant. Brain Struct Funct 223:1953-1970
Hagemann, Tracy L; Powers, Berit; Mazur, Curt et al. (2018) Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol 83:27-39

Showing the most recent 10 out of 111 publications