We propose to operate a state-of-the-art genome center to serve the scientific community. The Center will: (i) Have the flexible capability to produce a wide range of high-quality sequencing products - including whole-genome resequencing, whole-exome resequencing, de novo genome assembly, whole-transcriptome analysis, and epigenomic sequencing; (ii) Have the experience and ability to design, execute and analyze a wide range of scientific projects - including in medical genetics, cancer genomics, vertebrates genomics, microbial genomics and epigenomic analyses; (iii) Advance the state-of-the-art of sequencing - including by decreasing costs, developing new applications and pioneering new sequencing technologies;and (iv) Serve as a scientific resource for the biomedical community - including by creating and teaching courses, interacting with the research community to help with project design and working with the medical community to adapt protocols to clinical settings.
The Center's program will accelerate biomedical research, including through systematic identification of genes responsible for inherited diseases, genes recurrently mutated in cancer, functional elements encoded in the human genome, and microbes that interact with humans in health and disease. The knowledge will be made rapidly and freely available to the scientific community. It will provide a foundation for efforts to develop understand disease mechanisms and to develop approaches to prevention, diagnosis and therapy.
Hmeljak, Julija; Sanchez-Vega, Francisco; Hoadley, Katherine A et al. (2018) Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov 8:1548-1565 |
Breuss, Martin W; Nguyen, An; Song, Qiong et al. (2018) Mutations in LNPK, Encoding the Endoplasmic Reticulum Junction Stabilizer Lunapark, Cause a Recessive Neurodevelopmental Syndrome. Am J Hum Genet 103:296-304 |
Ding, Li; Bailey, Matthew H; Porta-Pardo, Eduard et al. (2018) Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell 173:305-320.e10 |
Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua et al. (2018) Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173:321-337.e10 |
Seiler, Michael; Peng, Shouyong; Agrawal, Anant A et al. (2018) Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Rep 23:282-296.e4 |
Way, Gregory P; Sanchez-Vega, Francisco; La, Konnor et al. (2018) Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep 23:172-180.e3 |
Liu, Yang; Sethi, Nilay S; Hinoue, Toshinori et al. (2018) Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell 33:721-735.e8 |
Ricketts, Christopher J; De Cubas, Aguirre A; Fan, Huihui et al. (2018) The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep 23:313-326.e5 |
Wang, S-H; Hsiao, P-C; Yeh, L-L et al. (2018) Polygenic risk for schizophrenia and neurocognitive performance in patients with schizophrenia. Genes Brain Behav 17:49-55 |
Arbesman, Joshua; Ravichandran, Sairekha; Funchain, Pauline et al. (2018) Melanoma cases demonstrate increased carrier frequency of phenylketonuria/hyperphenylalanemia mutations. Pigment Cell Melanoma Res 31:529-533 |
Showing the most recent 10 out of 349 publications