Whereas only three years ago we concerned ourselves mainly with production capacity and costs, the landscape of genome sequencing and analysis has changed to the point that we now find our attention focused on the application of our technology platform and our expertise to large-scale studies of the disease causing elements of the human genome. This evolution is the result of two major factors. The first is a highquality reference sequence of the human genome;in recent years, the quality and value of both the sequence and the attendant annotation have been greatly improved as a result of sequencing the genomes of other organisms. The second factor is the emergence of new technology that provides sufficient low-cost sequencing capacity to facilitate the interrogation of many individual human genomes in search of the sequence variants that underlie disease susceptibility and pathogenesis. In this proposal, we describe our extant genome technology platform, our extensive experience in sequencing and analyzing genomes, and we discuss how these resources may be brought to bear as a component of the NHGRI large-scale sequencing program. Additionally, we describe the new Tumor Sequencing Project and five """"""""center- initiated"""""""" projects that further illustrate how our technology platform will impact the fields of genome biology and genomic medicine over the next several years.

National Institute of Health (NIH)
National Human Genome Research Institute (NHGRI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZHG1-HGR-P (A1))
Program Officer
Felsenfeld, Adam
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Radovich, Milan; Pickering, Curtis R; Felau, Ina et al. (2018) The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33:244-258.e10
Shen, Hui; Shih, Juliann; Hollern, Daniel P et al. (2018) Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 23:3392-3406
Berger, Ashton C; Korkut, Anil; Kanchi, Rupa S et al. (2018) A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 33:690-705.e9
Hoadley, Katherine A; Yau, Christina; Hinoue, Toshinori et al. (2018) Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173:291-304.e6
Liu, Jianfang; Lichtenberg, Tara; Hoadley, Katherine A et al. (2018) An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 173:400-416.e11
Bailey, Matthew H; Tokheim, Collin; Porta-Pardo, Eduard et al. (2018) Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173:371-385.e18
Magrini, Vincent; Gao, Xin; Rosa, Bruce A et al. (2018) Improving eukaryotic genome annotation using single molecule mRNA sequencing. BMC Genomics 19:172
Blue, Elizabeth E; Bis, Joshua C; Dorschner, Michael O et al. (2018) Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer's Disease Sequencing Project. Dement Geriatr Cogn Disord 45:1-17
Hmeljak, Julija; Sanchez-Vega, Francisco; Hoadley, Katherine A et al. (2018) Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov 8:1548-1565
Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua et al. (2018) Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173:321-337.e10

Showing the most recent 10 out of 234 publications