The recent discovery of acid sensing ion channels (ASICs) as proton receptors in brain, the near universal presence of ASIC currents in neurons, their role in learning/memory, synaptic morphology (of dendritic spines) as well as their pivotal roles in neurological diseases (Ischemia, epilepsy, multiple sclerosis, spinal cord injury) makes the understanding of ASICs of high importance. But remarkably little is known of their physiological functions. For this reason, the proposed study aims to identify and characterize cell signaling pathways activated by ASICIa, a novel member of this proton-gated cation channel family. We hypothesize that ASICIa protein expression and channel activation will activate distinct signal transduction pathways in physiological and pathological conditions. The results of our preliminary high throughput quantitative proteomic analyses of ASICIa-expressing CHO cells revealed potential involvement of ASICIa in development, neurogenesis and axon guidance. In this proposal, we will focus on these discoveries and offer specific aims to define ASICIa-mediated signaling cascades in physiological conditions and in neurological disorders. Our group is highly experienced in using proteomics to identify novel cellular mechanisms in neuronal disorders and in using neurophysiology to characterize channel function.
Aim 1. Define the signaling pathways activated by ASICIa channels.
Aim 2. Determine the role of ASICIa channels in neuronal development.
Aim 3. Define distinct ASICIa-mediated signaling pathways in pathological conditions.

Public Health Relevance

ASICIa is a novel target for stroke. The success of the proposed studies will dramatically advance our understanding ofthe functions as well as regulations of these important channels. Identifying ASICIa mediated pathways specific to pathological conditions will provide critical information for designing novel therapeutic interventions against neurological diseases with minima side effects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS083932-03
Application #
8887175
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Morehouse School of Medicine
Department
Type
DUNS #
102005451
City
Atlanta
State
GA
Country
United States
Zip Code
30310
Piano, Ilaria; Baba, Kenkichi; Claudia Gargini et al. (2018) Heteromeric MT1/MT2 melatonin receptors modulate the scotopic electroretinogram via PKC? in mice. Exp Eye Res 177:50-54
Owino, Sharon; Sánchez-Bretaño, Aida; Tchio, Cynthia et al. (2018) Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res 64:
Huang, Yan; Leng, Tian-Dong; Inoue, Koichi et al. (2018) TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem 293:14393-14406
Morel, Caroline; Sherrin, Tessi; Kennedy, Norman J et al. (2018) JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory. J Neurosci 38:3708-3728
Klein, Pavel; Dingledine, Raymond; Aronica, Eleonora et al. (2018) Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 59:37-66
Vann, Kiara T; Xiong, Zhi-Gang (2018) Acid-sensing ion channel 1 contributes to normal olfactory function. Behav Brain Res 337:246-251
Hardy, Jimmaline J; Mooney, Scott R; Pearson, Andrea N et al. (2017) Assessing the accuracy of blood RNA profiles to identify patients with post-concussion syndrome: A pilot study in a military patient population. PLoS One 12:e0183113
Liu, Mingli; Inoue, Koichi; Leng, Tiandong et al. (2017) ASIC1 promotes differentiation of neuroblastoma by negatively regulating Notch signaling pathway. Oncotarget 8:8283-8293
Hernandez-Encarnacion, Luisa; Sharma, Pankaj; Simon, Roger et al. (2017) Condition-specific transcriptional regulation of neuronal ion channel genes in brain ischemia. Int J Physiol Pathophysiol Pharmacol 9:192-201
Sánchez-Bretaño, Aída; Baba, Kenkichi; Janjua, Uzair et al. (2017) Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3. Mol Vis 23:844-852

Showing the most recent 10 out of 51 publications