The Clinical Research in ALS and related disorders for Therapy Development (CREATE) RDCRC will focus on ALS and a group of related degenerative disorders that includes PLS, HSP, PMA, and FTD. This group of disorders is unified by their degenerative nature;their overlapping phenotypes resulting from degeneration of upper motor neuron, lower motor neuron and frontotemporal neuronal systems;their overlapping genetic susceptibility;their shared underlying biology;and their uniform lack of effective therapies. These disorders also share common challenges with respect to biomarker and therapeutic development - challenges that might be overcome through a shared experimental approach. The over-arching goals of the CREATE RDCRC are to better understand the relationship between genotype and phenotype for this group of disorders, and to develop disease biomarkers with a view to facilitating drug discovery and therapeutic development for patients afflicted with one of these neurodegenerative disorders. The CREATE RDCRC brings together a multi-disciplinary group of investigators and a diverse array of patient advocacy groups representing the patient populations that are the focus of our research efforts. These include the ALS Association, the Muscular Dystrophy Association, the Spastic Paraplegia Foundation, the Association for Frontotemporal Degeneration, the ALS Recovery Fund and PatientsLikeMe. The diversity of expertise within the CREATE RDCRC spans clinical neurology (neuromuscular disease and cognitive/behavioral neurology), genetics, genetic epidemiology, molecular neuroscience, biomarker development, drug discovery, biostatistics, and clinical trials, as well as patient advocacy, education and outreach. The CREATE Consortium, therefore, is a truly translational enterprise that effectively bridges the gap between basic scientists and investigators engaged in applied clinical research. Our new collaboration with the Ontario Brain Institute Neurodegenerative Disease Research Initiative, and the European STRENGTH Consortium significantly enhance the potential impact of this RDCRC.

Public Health Relevance

ALS, PLS, HSP, PMA and FTD are all characterized by degeneration of motor and frontotemporal neuronal systems. Effective therapies for these disorders are sorely needed. Disease heterogeneity and a paucity of biomarkers have hampered therapeutic development efforts. The goals of this RDCRC are to overcome these obstacles and thereby to advance therapeutic development for this group of rare diseases.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZTR1-CI-8 (01))
Program Officer
Gubitz, Amelie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Miami School of Medicine
Schools of Medicine
Coral Gables
United States
Zip Code
Nicolas, Aude (see original citation for additional authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 97:1268-1283.e6
Wilke, Carlo; Rattay, Tim W; Hengel, Holger et al. (2018) Serum neurofilament light chain is increased in hereditary spastic paraplegias. Ann Clin Transl Neurol 5:876-882
Lassuthova, Petra; Rebelo, Adriana P; Ravenscroft, Gianina et al. (2018) Mutations in ATP1A1 Cause Dominant Charcot-Marie-Tooth Type 2. Am J Hum Genet 102:505-514
Chen, Jacqueline; Kostenko, Volodymyr; Pioro, Erik P et al. (2018) MR Imaging-based Estimation of Upper Motor Neuron Density in Patients with Amyotrophic Lateral Sclerosis: A Feasibility Study. Radiology 287:955-964
Pottier, Cyril; Rampersaud, Evadnie; Baker, Matt et al. (2018) Identification of compound heterozygous variants in OPTN in an ALS-FTD patient from the CReATe consortium: a case report. Amyotroph Lateral Scler Frontotemporal Degener 19:469-471
Gendron, Tania F; Chew, Jeannie; Stankowski, Jeannette N et al. (2017) Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci Transl Med 9:
Gendron, Tania F; C9ORF72 Neurofilament Study Group; Daughrity, Lillian M et al. (2017) Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82:139-146
Schöls, Ludger; Rattay, Tim W; Martus, Peter et al. (2017) Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain 140:3112-3127
Esanov, Rustam; Cabrera, Gabriela Toro; Andrade, Nadja S et al. (2017) A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD. Mol Neurodegener 12:46
Mackenzie, Ian R; Nicholson, Alexandra M; Sarkar, Mohona et al. (2017) TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 95:808-816.e9

Showing the most recent 10 out of 23 publications