This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Technical Research Project 2, Protease Activity Imaging Technology (PAIT), will develop technology for imaging of cellular proteolysis in three and four dimensions. Two independent and complementary approaches will be taken. First, a high throughput substrate phage display system will be devised to identify highly selective indicator substrates for the vast majority of proteases encoded in the genome. Second, a chemical strategy will be applied to develop activity-based probes with an enzymatically activated fluorescent reporter. Both sets of beacons will be tested in biochemical and cellular models and will ultimately be used to image proteolysis at the cellular level

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54RR020843-03
Application #
7380824
Study Section
Special Emphasis Panel (ZRG1-BST-D (55))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
3
Fiscal Year
2006
Total Cost
$364,005
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Savinov, Alexei Y; Strongin, Alex Y (2013) Targeting the T-cell membrane type-1 matrix metalloproteinase-CD44 axis in a transferred type 1 diabetes model in NOD mice. Exp Ther Med 5:438-442
Moin, Kamiar; Sameni, Mansoureh; Victor, Bernadette C et al. (2012) 3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment. Methods Enzymol 506:175-94
Mueller, Kelly L; Madden, Julie M; Zoratti, Gina L et al. (2012) Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 14:R104
Giordano, Courtney R; Mueller, Kelly L; Terlecky, Laura J et al. (2012) A targeted enzyme approach to sensitization of tyrosine kinase inhibitor-resistant breast cancer cells. Exp Cell Res 318:2014-21
Bush, Jason A; Kitaura, Hideki; Ma, Yuliang et al. (2012) Comparative proteomic analysis of a cytosolic fraction from ?3 integrin-deficient cells. Cancer Genomics Proteomics 9:1-13
Mullins, Stefanie R; Sameni, Mansoureth; Blum, Galia et al. (2012) Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins. Biol Chem 393:1405-16
Timmer, John C; Salvesen, Guy S (2011) N-terminomics: a high-content screen for protease substrates and their cleavage sites. Methods Mol Biol 753:243-55
Das, Subhendu; Pellett, Philip E (2011) Spatial relationships between markers for secretory and endosomal machinery in human cytomegalovirus-infected cells versus those in uninfected cells. J Virol 85:5864-79
Yang, Yong; Cochran, Deborah A; Gargano, Mary D et al. (2011) Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell 22:976-87
Wojtkowiak, Jonathan W; Sane, Komal M; Kleinman, Miriam et al. (2011) Aborted autophagy and nonapoptotic death induced by farnesyl transferase inhibitor and lovastatin. J Pharmacol Exp Ther 337:65-74

Showing the most recent 10 out of 140 publications