The Genomics Scientific Support Component of CHAVI ID will focus its efforts on understanding the genetic contributions to immunological phenotypes relevant to responses to HIV-1 vaccination, with particular, but not sole, emphasis on the genetics of induction of broad neutralizing antibodies. In support of this work, we will also establish the core areas of competency that will be required for the SRSC to study the genetic and genomic bases and correlates of phenotypes of interest in HVTN and MHRP vaccine trials.
Specific Aims Aim 1: To use whole genome sequencing to identify genetic correlates of HlV-1 infected patients who do and do not make broadly neutralizing antibodies during chronic infection. To achieve this aim we will perform whole genome sequencing on 50 broad neutralizing subjects, who exhibit the greatest breadth of neutralizing antibodies as determined by the B Cell Focus group and the Neutralizing Antibody SRSC. Variants of nterest identified in these patients will be followed up in a larger cohort of approximately 600 chronically infected patients who have been characterized for degree of plasma neutralizing activity.
Aim 2 : To relate host gene variation to restricted VH gene usage and other characteristics of the immunoglobulin repertoire as characterized by deep sequencing of the variable heavy (VH) VDJ region.
Aim 3 : To use RNA sequencing (RNA-Seq) to characterize the transcriptomes of HIV responsive CD4 positive T cells and Tfh cells in vaccinated rhesus monkeys and humans and to relate transcriptomes of helper CD4 cells to qualitative features of antibody responses to vaccination. To achieve this aim we will build upon our existing experience with RNA-Seq to establish a RNA sequence analysis pipeline that is comparable to our whole genome and exome sequence analysis pipeline.
Aim 4 : To use whole genome sequencing to study genetic bases of key aspects of the immune responses to vaccination observed in the RV144 trial.

Public Health Relevance

The work proposed by the Genomics SRSC of CHAVI ID will provide new insights into the genetic contributions of immunological phenotypes relevant to responses to an HIV vaccination. These insights may help to identify genetic characteristics that regulate vaccine responses and aid in design of vaccines and in evaluation of vaccine trial results.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
5UM1AI100645-02
Application #
8508872
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$200,630
Indirect Cost
$72,840
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Finney, Joel; Kelsoe, Garnett (2018) Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design. Retrovirology 15:53
Bradley, Todd; Peppa, Dimitra; Pedroza-Pacheco, Isabela et al. (2018) RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 175:387-399.e17
Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E et al. (2018) Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. MBio 9:
Pardi, Norbert; Hogan, Michael J; Porter, Frederick W et al. (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17:261-279
Bowder, Dane; Hollingsead, Haley; Durst, Kate et al. (2018) Contribution of the gp120 V3 loop to envelope glycoprotein trimer stability in primate immunodeficiency viruses. Virology 521:158-168
Madani, Navid; Princiotto, Amy M; Mach, Linh et al. (2018) A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nat Commun 9:2363
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian et al. (2018) Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angew Chem Int Ed Engl 57:2072-2076
Prévost, Jérémie; Richard, Jonathan; Medjahed, Halima et al. (2018) Incomplete Downregulation of CD4 Expression Affects HIV-1 Env Conformation and Antibody-Dependent Cellular Cytotoxicity Responses. J Virol 92:
Prévost, Jérémie; Richard, Jonathan; Ding, Shilei et al. (2018) Envelope glycoproteins sampling states 2/3 are susceptible to ADCC by sera from HIV-1-infected individuals. Virology 515:38-45

Showing the most recent 10 out of 261 publications