The Clinical Sample Acquisition and Repository Scientific Research Support Component (SRSC) will provide human clinical samples required for the studies outlined in the CHAVI-ID research plan. One key goal of CHAVI-ID is to study subjects that make broad neutralizing antibodies (BnAbs) in order to understand how best to induce BnABs. Another key goal is to receive vaccine trial samples from collaborating networks and to provide these samples to CHAVI-ID investigators. The clinical samples that are needed for the B, T and Innate cell studies as well as studies in the SRSCs, are those from chronically infected subjects who have been extensively characterized for their ability to make broad neutralizing antibodies (BnAbs), and samples from HIV-1 vaccine trials carried out by the HIV Vaccine Trials Network (HVTN), the Military HIV Research Program (MHRP) or the NIH Vaccine Research Center (VRC) as well as control samples. It is also important to have a sample repository comprised of both samples from control groups, samples from volunteers in vaccine trials as well as samples from both acute and chronic HIV-1 infection cohorts, such that when opportunities arise to test new hypotheses that require clinical material, CHAVI-ID research can move quickly ahead without stopping to write and get new clinical protocols approved.
Specific Aims Aim 1. To recruit and maintain the CHAVI-ID clinical sites for CHAVI-ID studies.
Aim 2. To maintain high quality specimen processing laboratories at the CHAVI-ID sites to ensure the highest quality sample acquisition.
Aim 3. To maintain CHAVI-ID repository sample storage facilities for distribution to CHAVI-ID investigators.

Public Health Relevance

Access to HIV-infected patients followed over time is essential to understanding the immunology of HlV-1 infection. Having experienced and skilled clinical research personnel is essential for obtaining and maintaining high quality clinical specimens to support the research that can lead to successful vaccine design.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
4UM1AI100645-05
Application #
9088318
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Duke University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Bonsignori, Mattia; Scott, Eric; Wiehe, Kevin et al. (2018) Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity 49:1162-1174.e8
Blasi, Maria; Negri, Donatella; LaBranche, Celia et al. (2018) IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Commun Biol 1:134
Song, Hongshuo; Giorgi, Elena E; Ganusov, Vitaly V et al. (2018) Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nat Commun 9:1928
Hurwitz, Julia L; Bonsignori, Mattia (2018) Multi-Envelope HIV-1 Vaccine Development: Two Targeted Immune Pathways, One Desired Protective Outcome. Viral Immunol 31:124-132
Yates, Nicole L; deCamp, Allan C; Korber, Bette T et al. (2018) HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. J Virol 92:
Castillo-Menendez, Luis R; Nguyen, Hanh T; Sodroski, Joseph (2018) Conformational Differences Between Functional Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. J Virol :
Finney, Joel; Kelsoe, Garnett (2018) Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design. Retrovirology 15:53
Bradley, Todd; Peppa, Dimitra; Pedroza-Pacheco, Isabela et al. (2018) RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 175:387-399.e17
Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E et al. (2018) Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. MBio 9:
Pardi, Norbert; Hogan, Michael J; Porter, Frederick W et al. (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17:261-279

Showing the most recent 10 out of 261 publications